LOAN DOCUMENT | PHOTOGRAPH THIS SHEET | |---| | | | INVENTORY | | Initiative at Newark THENTIFICATION 73 | | DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited | | DISTRIBUTION STATEMENT | | DATE ACCESSIONED | | | | DATE RETURNED | | | | | | REGISTERED OR CERTIFIED NUMBER | | AND RETURN TO DTIC-FDAC | | PROCESSING SUFFET PREVIOUS EDITIONS MAY SE USED UNTIL. | | | # INTERIM REPORT March 2, 1993 **FOR** # **BIOVENTING FIELD INITIATIVE** AT NEWARK AIR FORCE BASE, OHIO to Captain Catherine M. Vogel Department of the Air Force AL/EQ 139 Barnes Drive Tyndall AFB, Florida 32403-6001 by BATTELLE Columbus Operations 505 King Avenue Columbus, Ohio 43201-2693 P.02/02 # **DEFENSE TECHNICAL INFORMATION CENTER** | | REQUEST FOR SCIENTIFIC AND | TECHNICAL REPU | K12 | |-------------|--|---|--| | Tis
, | AFCEE Collection | | · · · · · · · · · · · · · · · · · · · | | Ľ | No. 110 1111(1))))); (| | , ; | | 1. | Report Availability (Please check one box) | 2s. Number of | 2b. Forwarding Date | | X | This report is available. Complete sections 2a - 2f. | Copies Forwarded | · _ | | | This report is not available. Complete section 3. | (each | 0,0,1700 | | Źc. | . Distribution Statement (Please check ONE DOX) | 1 xuen | July 2080 | | Dal.
des | Directive 5230.24, "Distribution Statements on Technical Documents
cribed briefly below. Technical documents MUST be assigned a distrib | ." 18 Mar 87, contains sevel
oution statement. | n distribution statements, as | | × | DISTRIBUTION STATEMENT A: Approved for public rel | ease. Distribution is u | nlimited. | | | DISTRIBUTION STATEMENT B: Distribution authorized | to U.S. Government A | Agencies only. | | | DISTRIBUTION STATEMENT C: Distribution authorized contractors. | to U.S. Government / | Agencies and their | | | DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only. | to U.S. Department o | f Defense (DoD) and U.S | | | DISTRIBUTION STATEMENT E: Distribution authorized components only. | to U.S. Department of | f Defense (DoD) | | | DISTRIBUTION STATEMENT F: Further dissemination of indicated below or by higher authority. | only as directed by the | controlling DoD office | | | DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical | led technical data in a
Data from Public Disc | ccordance with DoD
losure, 6 Nov 84. | | | Reason For the Above Distribution Statement (in accord | | | | Ze, | Controlling Office | 2f. Date of Distri
Determination | bution Statement | | | HQ AFLEE | | 2000 | | 3 | This report is NOT forwarded for the following reasons | (Please check appropri | ate bax) | | | 10 | ete) and the AD numbe | | | | It will be published at a later date. Enter approximate dat | | | | | In accordance with the provisions of DoD Directive 3200, because. | *************************************** | ument is not supplied | | ** | DAMAN MARINE MAR | (The state of the | ************************************** | | | | # # # # # # # # # # # # # # # # # # # | ere i garan managang garan da san sa san sa da garan da garan da san sa da ce i garan da san da ce i a sa te i | | rrin
/ _ | t or Type Name Signal | ure |) | | (4)
Tela | who Pena | Pres of the Use on | na | | | 0-536-1431 | AQ Number | 101-02-0399 | # TABLE OF CONTENTS | LIST OF TABLES | . ii | |---|--| | LIST OF FIGURES | . ii | | 1.0 INTRODUCTION 1.1 Objectives | 1
2
2
2 | | 2.0 FACILITY 27 2.1.1 Groundwater Measurements 2.1.2 Soil Gas Survey 2.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 2.1.4 Soil and Soil Gas Sampling and Analyses 2.1.5 Soil Gas Permeability and Radius of Influence 2.1.6 In Situ Respiration Test 2.2 Results and Discussion 2.2.1 Soil and Soil Gas Analyses 2.2.2 Soil Gas Permeability and Radius of Influence 2.2.3 In Situ Respiration Test 2.2.4 Bioventing Demonstration | 6 6 . 9 . 11 . 12 . 13 . 13 . 15 | | 3.0 FACILITY 89 3.1 Chronology of Events and Site Activities 3.1.1 Groundwater Measurements 3.1.2 Soil Gas Survey 3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 3.1.4 Soil and Soil Gas Sampling and Analyses 3.1.5 Soil Gas Permeability and Radius of Influence 3.1.6 In Situ Respiration Test 3.2 Results and Discussion 3.2.1 Soil and Soil Gas Analyses 3.2.2 Soil Gas Permeability and Radius of Influence 3.2.3 In Situ Respiration Test 3.2.4 Bioventing Demonstration | 20
20
20
20
23
24
24
24
24
25
26 | | 4.0 FACILITY 14 4.1 Chronology of Events and Site Activities 4.1.1 Groundwater Measurements 4.1.2 Soil Gas Survey 4.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 4.1.4 Soil Sampling and Analyses 4.2 Soil Analyses Results and Discussion | 30
30
30
30
32 | | 5.0 BACKGROUND AREA 3 | 5 | |--|----| | 6.0 FUTURE WORK 3 | 8 | | 7.0 REFERENCE | 18 | | APPENDIX A: TEST PLAN FOR NEWARK AFB | -1 | | APPENDIX B: ANALYTICAL REPORT FOR FACILITIES 27, 89, AND 14, AND THE BACKGROUND AREA | -1 | | APPENDIX C: FACILITY 27
SOIL GAS PERMEABILITY DATA | -1 | | APPENDIX D: FACILITY 27 IN SITU RESPIRATION TEST DATA De | -1 | | APPENDIX E: FACILITY 89 SOIL GAS PERMEABILITY DATA E | -1 | | APPENDIX F: FACILITY 89 IN SITU RESPIRATION TEST DATA F | -1 | | I ICE OF TABLES | | | LIST OF TABLES | | | Table 6. Initial Soil Gas Composition at Facility 89 | 14 | | LIST OF FIGURES | | | Figure 1. Schematic Diagram of Newark AFB | 3 | | Figure 3. | Schematic Diagram of Facility 89 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point) | 5 | |------------|--|----| | Figure 4. | Schematic Diagram of Facility 14 at Newark AFB (GS - Soil Gas Survey Point; | | | | MP - Monitoring Point) | 7 | | Figure 5. | Cross Section of Vent Well and Monitoring Points at Facility 27 Showing Site | | | | Lithology and Construction Detail | 10 | | Figure 6. | Radius of Influence at Facility 27 | 17 | | Figure 7. | Oxygen Utilization and Carbon Dioxide Production During the In Situ | | | _ | Respiration Test at Monitoring Point N1-MPB-9.0' | 18 | | Figure 8. | Cross Section of Vent Well and Monitoring Points at Facility 89 Showing Site | | | _ | Lithology and Construction Detail | 22 | | Figure 9. | Oxygen Utilization and Carbon Dioxide Production During the In Situ | | | | Respiration Test at Monitoring Point N2-MPA-7.0' | 29 | | Figure 10. | Cross Section of Vent Well and Monitoring Points at Facility 14 Showing Site | | | | Lithology and Construction Detail | 33 | | Figure 11. | Oxygen Utilization and Carbon Dioxide Production During the In Situ | | | | Respiration Test at the Background Area | 37 | #### **INTERIM REPORT** **FOR** #### **BIOVENTING FIELD INITIATIVE** AT #### NEWARK AIR FORCE BASE, OHIO #### 1.0 INTRODUCTION This report describes the activities conducted at three sites at Newark Air Force Base (AFB), Ohio, as part of the Bioventing Field Initiative for the U.S. Air Force Center for Environmental Excellence (AFCEE) and the Environmental Quality Directorate of the Air Force Armstrong Laboratory. This report summarizes the results from the first phase of the study, which includes a soil gas survey, air permeability test, in situ respiration test, and installation of bioventing systems. The specific objectives of this task are described in the following section. The test sites at the base are discussed individually, followed by a description of site activities at the background area. # 1.1 Objectives The purpose of these field test methods is to measure the soil gas permeability and microbial activity at three contaminated sites and to evaluate the potential application of the bioventing technology to remediate the sites. The specific test objectives are stated below. - A small-scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system at each site. Soil gas from the candidate sites should exhibit relatively high total petroleum hydrocarbon (TPH) concentrations, relatively low oxygen concentrations, and relatively high carbon dioxide concentrations. An uncontaminated background location also will be identified. - The soil gas permeability of the soil and the air vent (well) radius of influence will be determined for each site. These will require air to be withdrawn or injected for approximately 8 hours at vent wells located in contaminated soils. Pressure changes will be monitored in an array of monitoring points. - Immediately following the soil gas permeability test, an in situ respiration test will be conducted at each site. Air will be injected into selected monitoring points to aerate the soils. The in situ oxygen utilization and carbon dioxide production rates will be measured. - Using the data from the soil gas permeability and in situ respiration tests, an air injection/withdrawal rate will be determined for use in the bioventing test at each site. A blower will be selected, installed, and operated for 6 to 12 months, and periodic measurements of the soil gas composition will be made to evaluate the long-term effectiveness of bioventing. # 1.2 Site Description Three sites were initially chosen for the bioventing initiative at Newark AFB, Ohio. A schematic diagram of the base is shown in Figure 1. The dashed line on the map represents the direction from the main gate to each test site. Summaries of the descriptions of each site are presented in the following sections. A detailed description of the test sites is provided in the Test Plan in Appendix A. # 1.2.1 Facility 27 Facility 27 (Site N1 on Figure 1; the base motor pool) has three fiberglass underground storage tanks (1,000 gallons unleaded gasoline, 4,000 gallons unleaded gasoline, and 4,000 gallons diesel). The site is an active fuel dispensing facility. Site characterization data have indicated there is soil contaminated with petroleum hydrocarbons in the tank cavity and in the supply line backfill. Figure 2 is a schematic diagram of Facility 27. # 1.2.2 Facility 89 Facility 89 is the site of a 20,000 gallon diesel tank (Site N2 on Figure 1). The site is an active fuel dispensing facility. Site characterization data have indicated there is soil contaminated with petroleum hydrocarbons in the tank cavity. Figure 3 is a schematic diagram of Facility 89. Figure 1. Schematic Diagram of Newark AFB Figure 2. Schematic Diagram of Facility 27 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point) Figure 3. Schematic Diagram of Facility 89 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point) # 1.2.3 Facility 14 Facility 14 is the previous site of a #2 diesel fuel underground storage tank with a capacity of approximately 2,500 gallons (Site N3 on Figure 1). Soil samples have shown contamination with concentrations of TPH ranging from 112 to 322 mg/kg at depths of 5 to 10 feet. A schematic diagram of Facility 14 is shown in Figure 4. #### 2.0 FACILITY 27 #### 2.1 Chronology of Events and Site Activities #### 2.1.1 Groundwater Measurements One groundwater monitoring well was measured at Facility 27. The groundwater level was recorded at 8.65 feet. #### 2.1.2 Soil Gas Survey A site deemed suitable for the bioventing demonstration should have soil gas characteristics of low oxygen, high carbon dioxide, and high TPH. This composition of soil gas would indicate that oxygen-limiting conditions for microbial activity are present and that the introduction of air may enhance biodegradation of TPH. A limited soil gas survey was conducted on July 27, 1992 to locate a suitable test area at Facility 27. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen and carbon dioxide in the soil gas were made with a GasTech Model 32530X with oxygen and carbon dioxide ranges of 0 to 25%. The analyzer was calibrated daily against atmospheric oxygen, atmospheric carbon dioxide, a 10% oxygen calibration standard, and a 5% carbon dioxide calibration standard. TPH was measured with a GasTech Trace Techtor with Figure 4. Schematic Diagram of Facility 14 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point) Table 1. Initial Soil Gas Composition at Facility 27 | Soil Gas Survey
Point | Depth (ft) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppm) | |--------------------------|------------|------------|--------------------|-----------| | GS-1 | 2.0 | 9.0 | 12.5 | 4,000 | | | 3.0 | 19.0 | 2.3 | 150 | | | 4.0 | NM | NM | NM | | GS-2 | 2.5 | 19.2 | NM | 8,000 | | GS-3 | 2.5 | NM | NM | NM | | GS-4 | 2.5 | NM | NM | NM | | GS-5 | 2.5 | NM | NM | NM | | GS-6 | 2.5 | 8.5 | 5.5 | 200 | | | 3.5 | 7.5 | 6.0 | 210 | | | 5.0 | 7.0 | 6.5 | 210 | | GS-7 | 2.5 | NM | NM | NM | | | 5.0 | 3.1 | 8.6 | 290 | | | 7.5 | 2.2 | 8.9 | 300 | NM Not measurable due to inability to collect soil gas sample resulting from low soil gas permeability. TPH ranges from 0 to 100, 0 to 1,000, and 0 to 10,000 ppm. The GasTech Trace Techtor was calibrated daily against a 4,200-ppm hexane standard. Soil borings were advanced during previous site characterization activities to depths of approximately 25 feet. No groundwater was encountered at this site at this depth. The soil gas probes were driven to depths ranging from 2.0 to 7.5 feet at several locations at Facility 27. Table 1 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 27. Oxygen concentrations varied from 2.2 to 21%, whereas TPH concentrations ranged from 150 up to 8,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing. # 2.1.3 Vent Well, Monitoring Point, and Thermocouple Installation On July 29, 1992, the vent well (VW) and three monitoring points (MPs) were installed at Facility 27, and collection of soil samples for analyses was begun. The monitoring points were labeled N1-MPA, N1-MPB, and N1-MPC. The locations of the vent well and monitoring points are shown in Figure 2. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 5. The vent well was installed at a depth of 11.2 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter polyvinyl chloride (PVC) piping with 6 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface. Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest
monitoring point to the ground surface. The monitoring points were installed at depths as follows: - Monitoring point N1-MPA was installed at a depth of 9.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.0', 6.5', and 9.0'. - Monitoring point N1-MPB was installed at a depth of 10.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.0', 6.5', and 9.0'. MPC MPB MPA Vent Well F/Kittel11/n-1 Monitoring point N1-MPC was installed at a depth of 8.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.7', 5', and 8.0'. A Type J thermocouple was installed with monitoring points N1-MPA-4.0' and N1-MPA-9.0'. # 2.1.4 Soil and Soil Gas Sampling and Analyses Soil boring samples were collected from depths of 4.0 feet to 4.5 feet and from 8.0 feet to 9.0 feet from the Facility 27 monitoring point A borehole and were labeled N1-A-4'-4.5' and N1-A-8'-9'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of benzene, toluene, ethylbenzene, and xylenes (BTEX); TPH; alkalinity; moisture content; pH; iron; total phosphorous; total Kjeldahl nitrogen; and particle size analysis. Soil gas samples were collected from monitoring points N1-MPA and N1-MPC and from the vent well. These samples were labeled N1-A-6.5, N1-C-8', and N1-V-11.2. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH. # 2.1.5 Soil Gas Permeability and Radius of Influence A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The monitoring points at Facility 27 were allowed to set up for 24 hours prior to air injection. A portable 1-horsepower (HP) explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The Hyperventilate¹¹ computer model was used to calculate the soil gas permeability. # 2.1.6 In Situ Respiration Test Immediately following the soil gas permeability test at Facility 27, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on August 11, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points N1-MPA-6.5', N1-MPA-9.0', N1-MPB-6.5', and N1-MPB-9.0' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on August 17. Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributed to either diffusion or leakage. A rapid drop in helium concentration followed by a leveling is an indication of leakage. A gradual loss along with an apparent first-order curve is an indicator of diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium diffuses about 2.8 times faster than oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. As a general rule, we have found that if helium concentrations are at least 50 to 60% of the initial levels at test completion, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative. To compare data from one site to another, a stoichiometric relationship of the oxidation of the hydrocarbon was assumed. Hexane was used as the representative hydrocarbon for the organic contaminant. The stoichiometric relationship is given by: $$C_6H_{14} + 9.5O_2 - 6CO_2 + 7H_2O$$ (1) Based on the utilization rates (% per day), the biodegradation rates in terms of milligrams as a hexane equivalent per kilogram of soil per day were computed using the equation below by assuming a soil porosity of 0.2 and a bulk density of 1,440 kg/m³. $$K_{\beta} = \frac{-K_{o}AD_{o}C}{100}$$ (2) where: $K_{g} = biodegradation rate (mg/kg/day)$ K_o = oxygen utilization rate (percent per day) A = volume of air/kilogram of soil, in this case 300/1,440 = 0.21 D_o = density of oxygen gas (mg/L) assumed to be 1,330 mg/L C = mass ratio of hydrocarbon to oxygen required for mineralization, assumed to be 1:3.5 from the above stoichiometric equation. #### 2.2 Results and Discussion # 2.2.1 Soil and Soil Gas Analyses Results of the soil analyses for BTEX and TPH at Facility 27 are presented in Table 2. No detectable concentrations of the BTEX compounds were found in the soil samples, and relatively low TPH concentrations were found with concentrations averaging only 43 mg/kg. Soil gas analyses also showed relatively low BTEX and TPH concentrations, with concentrations ranging from below the detection limit up to 0.046 ppmv of benzene and from 130 to 2,200 ppmv of TPH (Table 2). The results from the soil chemistry analyses are summarized in Table 3. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B. # 2.2.2 Soil Gas Permeability and Radius of Influence The raw data for the soil gas permeability test at Facility 27 are presented in Appendix C. Using the Hyperventilate™ computer model, soil gas permeabilities were calculated at each of the monitoring points. These data are presented in Table 4. The measurable soil gas permeability varied considerably between points with values ranging from 0.026 to 4.3 x 10¹⁰ darcys. No pressure could be detected at any of the soil gas probes at monitoring point C. The radius of influence where 1 inch Table 2. Results From Soil and Soil Gas Analyses for BTEX and TPH at Facility 27 | Matrix | Sample Name | Benzene
(mg/kg) | Toluene
(mg/kg) | Ethylbenzene
(mg/kg) | Total
Xylenes
(mg/kg) | TPH¹
(mg/kg) | |----------|--------------|--------------------|--------------------|-------------------------|-----------------------------|-----------------| | Soil | N1-A-4'-4.5' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | 49 | | | N1-A-8'-9' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | 36 | | Matrix | Sample Name | Benzene
(ppmv) | Toluene
(ppmv) | Ethylbenzene
(ppmv) | Total
Xylenes
(ppmv) | TPH²
(ppmv) | | Soil Gas | N1-A-6.5 | 0.046 | 0.0080 | < 0.0020 | 0.0030 | 2,200 | | | N1-C-8' | 0.0050 | 0.0060 | < 0.0040 | < 0.0040 | 130 | | | N1-V-11.2 | < 0.011 | 0.056 | 0.026 | 0.31 | 800 | ¹ Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene. ² TPH referenced to jet fuel (molecular weight = 156). Table 3. Results From Soil Chemistry Analyses at Facility 27 | | | Sample Name | | | | |---------------------------------------|---------|-------------|---------|---------------|--| | Parameter | N1- | A-4'-4.5' | N1-A | -8'-9' | | | Alkalinity (mg/kg CaCO ₃) | | 410 | | 30 | | | Moisture (% by weight) | | 18.2 | | 4.0 | | | рН | 7.7 | | .8 | | | | Iron (mg/kg) | 1 | 16,400 | | ,400 | | | Total Phosphorous (mg/kg) | | 570 | 4 | 60 | | | Total Kjeldahl Nitrogen (mg/kg) | | 300 | 4 | 00 | | | Particle Size Analysis (%) | Gravel: | 6.2 | Gravel: | 26 | | | | Sand: | 33.8 | Sand: | 42 | | | | Silt: | 38 | Silt: | 23 | | | | Clay: | 22 | Clay: | 9 | | Table 4. Results of Hyperventilate™ Soil Gas Permeability Analysis at Facility 27 | Monitoring Point | Depth (ft) | Soil Gas Permeability (darcy) | |------------------|------------|-------------------------------| | N1-MPA | 4.0 | 0.026 | | | 6.5 | 970 | | | 9.0 | 4.3 x 10 ¹⁰ | | N1-MPB | 4.0 | 9.3 x 10 ⁵ | | | 6.5 | 4.4 x 10 ⁵ | | | 9.0 | 1.3 x 10 ⁷ | | N1-MPC | 2.7 | NM | | | 5.0 | NM | | | 8.0 | NM | NM No pressure change could be measured at this point. of pressure was measured was calculated by plotting the log of the pressure change at the monitoring points versus the distance from the vent well (Figure 6). Based on these specifications, the radius of influence at Facility 27 is estimated to be approximately 12 feet. # 2.2.3 In Situ Respiration Test The results of the in situ respiration test for Facility 27 are presented in Appendix D. Each figure in Appendix D illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 7, which shows oxygen, carbon dioxide, and helium at monitoring point N1-MPB-9'. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 5. The biodegradation rates measured at this site were fairly consistent between the monitoring points, with rates ranging from 2.1 to 7.5 mg/kg/day based upon oxygen and from 0.58 to 1.4 mg/kg/day for carbon dioxide. Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well-sealed and that the oxygen depletion observed was a result of biodegradation. Soil temperatures were measured during the in situ respiration test. Temperatures during the test ranged from 23.9 to 27°C at monitoring point N1-MPA-4.0′ and from 18.9 to 20°C at monitoring point N1-MPA-9.0′. #### 2.2.4 Bioventing Demonstration The decision was made to install a bioventing system at Facility 27. The same blower that was used for the soil gas
permeability test was installed for the bioventing system. The system was configured for air extraction due to its proximity to the service station offices. A sample of the exhaust gas was collected after 1 hour of operation. No detectable concentrations of BTEX were found, and the maximum TPH concentration was 130 ppm. The analytical report for these samples is given in Appendix B (Samples N1-EX-1210 and N1-EX-1220). Approval was given to operate the system, and continuous air extraction was initiated during the second week of November 1992. Due to construction in the area, the system was shut down on January 8, 1993 and was restarted on February 4, 1993. Figure 6. Radius of Influence at Facility 27 Figure 7. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-9.0' Table 5. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Facility 27 | Sample Name | Oxygen
Utilization Rate
(%/hour) | Biodegradation
Rate
(mg/kg/day) | Carbon Dioxide
Production Rate
(%/hour) | Biodegradation
Rate
(mg/kg/day) | |-------------|--|---------------------------------------|---|---------------------------------------| | Background | 0.040 | 0.80 | 0.017 | 0.37 | | N1-MPA-6.5' | 0.39 | 7.5 | 0.064 | 1.4 | | N1-MPA-9.0' | 0.11 | 2.1 | 0.027 | 0.58 | | N1-MPB-6.5' | 0.27 | 5.2 | 0.064 | 1.4 | | N1-MPB-9.0' | 0.26 | 5.0 | 0.063 | 1.4 | #### 3.0 FACILITY 89 # 3.1 Chronology of Events and Site Activities #### 3.1.1 Groundwater Measurements Groundwater measurements were taken from the vent well installed at the Facility 89 site. The groundwater level was recorded at 6.8 feet. # 3.1.2 Soil Gas Survey A limited soil gas survey was conducted on July 28, 1992 to locate a suitable test area at Facility 89. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen, carbon dioxide, and TPH in the soil gas were made as described in Section 2.0. The soil gas probes were driven to depths ranging from 2.5 to 7.5 feet at several locations at Facility 89. Table 6 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 89. Oxygen concentrations varied from 5.8 to 21%, whereas TPH concentrations ranged from 0 to 1,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing. # 3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation On July 30, 1992, the vent well (VW) and three monitoring points (MPs) were installed at Facility 89, and collection of soil samples for analyses was begun. The monitoring points were labeled N2-MPA, N2-MPB, and N2-MPC. The location of the vent well and monitoring points is shown in Figure 3. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 8. The vent well was installed at a depth of 10.2 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 7.6 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular Table 6. Initial Soil Gas Composition at Facility 89 | Soil Gas Survey
Point | Depth (ft) | Oxygen (%) | Carbon Dioxide (%) | ТРН (ррт) | |--------------------------|------------|------------|--------------------|-----------| | GS-1 | 2.5 | 19.8 | 0.060 | 100 | | | 5.0 | 14.5 | 3.8 | 190 | | | 5.7 | 18 | 2.5 | 340 | | GS-2 | 2.5 | 12.8 | 5.3 | 230 | | | 5.0 | 18 | 2.3 | 420 | | GS-3 | 2.5 | 18 | 2.0 | 180 | | | 5.0 | 17.9 | 2.5 | 180 | | | 7.5 | 211 | 0.060 | 75 | | GS-4 | 2.5 | 12.5 | 3.3 | 580 | | | 5.0 | 211 | 0.050 | 100 | | GS-5 | 2.5 | 211 | 0.050 | 170 | | | 5.0 | 15 | 1.2 | 210 | | GS-7 | 2.5 | 16.5 | 2.2 | 1,000 | | | 5.0 | 7.5 | 5.2 | 190 | | GS-8 | 2.5 | 16 | 3.3 | 120 | | GS-9 | 2.5 | 16 | 3.6 | 170 | | GS-10 | 2.5 | 16 | 4.0 | 280 | | GS-11 | 2.5 | 211 | 0.050 | 190 | | GS-12 | 2.5 | 17 | 3.5 | 150 | | | 5.0 | 211 | 0.050 | 140 | | GS-13 | 2.5 | 11.5 | 5.8 | 120 | | | 5.0 | 14 | 4.3 | 220 | | GS-14 | 2.5 | 5.8 | 5.2 | 140 | Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower. MPB **Vent Well** MPA MPC Figure 8. Cross Section of Vent Well and Monitoring Points at Facility 89 Showing Site Lithology and Construction Detail space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface. Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed as follows: - Monitoring point N2-MPA was installed at a depth of 10.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.5', and 7.0'. - Monitoring point N2-MPB was installed at a depth of 12.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 5.0', 7.5', and 10.0'. - Monitoring point N2-MPC was installed at a depth of 10.3' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.7', 6.5', and 9.0'. A Type J thermocouple was installed with monitoring points N2-MPA-2.0' and N2-MPA-7.0'. # 3.1.4 Soil and Soil Gas Sampling and Analyses Soil samples were collected from depths of 4.3 to 4.8 feet and from 9.0 to 9.5 feet from the vent well borehole and were labeled N2-V-4.3'-4.8' and N2-V-9.0'-9.5', respectively. A soil sample also was taken from monitoring point N2-MPC at a depth of 10.0 feet and was labeled N2-C-10'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size analysis. Soil gas samples were collected from monitoring points N2-MPC-6.5' and N2-MPC-9.0' and from the vent well. These samples were labeled N2-C-6.5, N2-C-9, N2-V-3-9. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH. # 3.1.5 Soil Gas Permeability and Radius of Influence A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The monitoring points at Facility 89 were allowed to set up for 24 hours prior to air injection. A portable 2.5-HP explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability. # 3.1.6 In Situ Respiration Test Immediately following the soil gas permeability test at Facility 89, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on August 6, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points N2-MPA-7.0', N2-MPB-7.5', N2-MPB-10.0', and N2-MPC-6.5' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on August 10. Results of the in situ respiration were calculated as described in Section 2.1.6. #### 3.2 Results and Discussion #### 3.2.1 Soil and Soil Gas Analyses Results of the soil analyses for BTEX and TPH at Facility 89 are presented in Table 7. No detectable concentrations of BTEX were measured in any soil samples, and TPH was only detected at a concentration of 31 mg/kg from the vent well soil sample. The soil gas analyses also showed low BTEX and TPH concentrations, with concentrations ranging from below the detection limit to 0.027 Table 7. Results From Soil and Soil Gas Analyses for BTEX and TPH at Facility 89 | Matrix | Sample Name | Benzene
(mg/kg) | Toluene
(mg/kg) | Ethylbenzene
(mg/kg) | Total
Xylenes
(mg/kg) | TPH¹
(mg/kg) | |----------|----------------|--------------------|--------------------|-------------------------|-----------------------------|------------------| | Soil | N2-V-4.3'-4.8' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | 31 | | | N2-V-9.0'-9.5' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | < 5.0 | | | N2-C-10' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | < 5.0 | | Matrix | G I N | Benzene | Toluene | Ethylbenzene | Total
Xylenes | TPH ² | | Mauix | Sample Name | (ppmv) | (ppmv) | (ppmv) | (ppmv) | (ppmv) | | Soil Gas | N2-V-3-10 | (ppmv)
<0.021 | (ppmv)
<0.021 | (ppmv)
<0.021 | (ppmv)
<0.021 | (ppmv)
74 | | | | | | | | | Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene. ppmv of toluene and from 3.5 to 74 ppmv of TPH (Table 7). The results from the soil chemistry analyses are summarized in Table 8. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B. #### 3.2.2
Soil Gas Permeability and Radius of Influence The raw data for the soil gas permeability test at Facility 89 are presented in Appendix E. Using the Hyperventilate™ computer model, soil gas permeabilities were calculated at each of the monitoring points. These data appear in Table 9. The measurable soil gas permeability varied considerably between points with values ranging from 6.6 up to 8.7 x 10° darcy. No pressure change could be detected at any of the soil gas probes at monitoring point C. Typically, the radius of influence is calculated by plotting the log of the pressure change at a specific monitoring point versus the distance from the vent well. The radius of influence would then be the distance where 1 inch of ² TPH referenced to jet fuel (molecular weight = 156). water pressure can be measured. However, in this instance, 1 inch of water pressure was not achieved at any monitoring point; therefore, a radius of influence based on these specifications cannot be definitively determined at this site, other than to say it is less than 19.7 feet, the distance from the vent well to the closest monitoring point. # 3.2.3 In Situ Respiration Test The results of the in situ respiration test for Facility 89 are presented in Appendix F. Each figure in Appendix F illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 9, which shows oxygen, carbon dioxide, and helium at monitoring point N2-MPA-7'. Biodegradation rates were relatively low at all monitoring points. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 10. The biodegradation rates measured at this site were relatively low, with rates ranging from 0.27 to 0.52 mg/kg/day based on oxygen and from 0.013 to 0.28 mg/kg/day based on carbon dioxide. Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well sealed and that the oxygen depletion observed was a result of biodegradation. Soil temperatures were measured at monitoring point N2-MPA-2.0' during the in situ respiration test. Temperatures during the test ranged from 20.8 to 21.5°C. #### **3.2.4 Bioventing Demonstration** The decision was made to install a bioventing system at Facility 89. The same blower that was used for the soil gas permeability test was installed for the bioventing system. Continuous air injection was initiated on September 9, 1992 at a flowrate of 27 scfm. Table 8. Results From Soil Chemistry Analyses at Facility 89 | | Sar | Sample Name | | | |---------------------------------------|------------|-------------|--|--| | Parameter | N2-V-3'-4' | N2-V-8'-9' | | | | Alkalinity (mg/kg CaCO ₃) | 420 | 490 | | | | Moisture (% by weight) ¹ | 15.0 | 16.8 | | | | pH | 7.8 | 7.7 | | | | Iron (mg/kg) | 18,000 | 14,200 | | | | Total Phosphorus (mg/kg) | 540 | 540 | | | | Total Kjeldahl Nitrogen (mg/kg) | 450 | 270 | | | | Particle Size Analysis (%) | Gravel: 10 | Gravel: 1.3 | | | | | Sand: 42 | Sand: 38.7 | | | | | Silt: 33 | Silt: 45 | | | | | Clay: 15 | Clay: 15 | | | Three soil samples were analyzed for moisture content only. These results were N2-V-4.3'-4.8', 15.7%; N2-V-9.0'-9.5', 26.1%; and N2-C-10', 20.7%. Table 9. Results of Hyperventilate™ Soil Gas Permeability Analysis at Facility 89 | Monitoring Point | Depth (ft) | Soil Gas Permeability (darcy) | | |------------------|------------|-------------------------------|--| | N2-MPA | 2.0 | 6.6 | | | | 4.5 | 8.7 x 10° | | | | 7.0 | ND | | | N2-MPB | 5.0 | 370 | | | | 7.5 | 2.8 x 10 ⁵ | | | | 10.0 | 22 | | | N2-MPC | 4.7 | NM | | | | 6.5 | NM | | | | 9.0 | NM | | ND No data were collected at this monitoring point. NM No pressure change was measured at this monitoring point. Table 10. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Facility 89 | Sample Name | Oxygen
Utilization Rate
(%/hour) | Biodegradation
Rate
(mg/kg/day) | Carbon Dioxide
Production Rate
(%/hour) | Biodegradation
Rate
(mg/kg/day) | |--------------|--|---------------------------------------|---|---------------------------------------| | Background | 0.042 | 0.80 | 0.017 | 0.37 | | N2-MPA-7.0' | 0.015 | 0.29 | 0.012 | 0.26 | | N2-MPB-7.5' | 0.027 | 0.52 | 0.0060 | 0.013 | | N2-MPB-10.0' | 0.014 | 0.27 | 0.013 | 0.28 | | N2-MPC-6.5' | 0.027 | 0.52 | 0.0030 | 0.065 | Figure 9. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPA-7.0' #### 4.0 FACILITY 14 # 4.1 Chronology of Events and Site Activities An air permeability test and an in situ respiration test were not conducted at this site. Originally, these tests were to be conducted at a later date if funding were available. However, the site has been declared clean by the State of Ohio and no further work is planned for this site. Only initial site activities and soil sampling results are presented in this section. #### 4.1.1 Groundwater Measurements One groundwater monitoring well was measured at Facility 14. The groundwater level was recorded at 4.0 feet. # 4.1.2 Soil Gas Survey A limited soil gas survey was conducted on July 29, 1992 to locate a suitable test area at Facility 14. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen, carbon dioxide, and TPH in the soil gas were made as described in Section 2.0. The soil gas probes were driven to depths ranging from 2.0 to 4.5 feet at several locations at Facility 14. Table 11 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 14. Oxygen concentrations varied from 0 to 21%, whereas TPH concentrations ranged from 0 to 700 ppm. These results suggest that there is little hydrocarbon contamination at the site, although some areas appear to be oxygen-limited. # 4.1.3 Vent Well, Monitoring Point, and Thermocouple Installation On August 17, 1992, a vent well (VW) and three monitoring points (MPs) were installed at Facility 14, and collection of soil samples for analyses was begun. The monitoring points were labeled N3-MPA, N3-MPB, and N3-MPC. The location of the vent well and monitoring points is Table 11. Initial Soil Gas Composition at Facility 14 | Soil Gas Survey
Point | Depth (ft) | Oxygen (%) | Carbon Dioxide (%) | ТРН (ррт) | |--------------------------|------------|------------|--------------------|-----------| | GS-1 | 2.0 | 20 | 0.02 | 54 | | | 3.5 | 19.8 | 0.5 | 66 | | GS-2 | 2.5 | 0.38 | 5.0 | 350 | | GS-3 | 2.0 | 11.0 | 4.0 | 240 | | | 3.5 | 11.0 | 3.8 | 380 | | GS-4 | 2.5 | 171 | 1.0 | 100 | | GS-5 | 2.5 | 17.8 | 1.2 | 170 | | GS-7 | 2.5 | 18.9 | 0.9 | 170 | | GS-8 | 2.5 | 8.5 | 6.5 | 700 | | | 4.0 | 15.5 | 2.3 | 400 | | GS-9 | 2.5 | 20 | 0.05 | 400 | | | 4.0 | 21 | 0.05 | 210 | | GS-10 | 2.5 | 1.5 | 7.2 | 85 | | | 4.0 | 11.5¹ | 3.7 | 82 | | GS-11 | 2.5 | 2.1 | 6.9 | 172 | | | 3.5 | 2.0 | 6.9 | 182 | | GS-12 | 2.5 | 0 | 11.5 | 120 | | | 4.0 | 0 | 11.5 | 240 | | GS-13 | 2.5 | 4.5 | 10 | 202 | | | 4.0 | 4.5 | 10 | 220 | | GS-14 | 2.5 | 21 | 0.7 | 0 | | | 4.5 | 17 | 1.2 | 80 | | GS-15 | 2.5 | 15.5 | 3.7 | 150 | Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower. shown in Figure 4. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 10. The vent well was installed at a depth of 7.25 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 5.0 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface. Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed as follows: - Monitoring point N3-MPA was installed at a depth of 7.3' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.2', 3.7', and 7.0'. - Monitoring point N3-MPB was installed at a depth of 7.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.0', and 7.0'. - Monitoring point N3-MPC was installed at a depth of 9.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.0', and 7.0'. A Type J thermocouple was installed with monitoring points N3-MPA-2.2' and N3-MPA-7.0'. ### 4.1.4 Soil Sampling and Analyses A soil boring sample was collected at a depth of 7.0 to 7.5 feet from the Facility 14 vent well borehole and was labeled N3-V-7'-7.5'. Soil samples were also taken from monitoring points N3-MPA and N3-MPC and were labeled N3-A-2'-3', N3-A-6'-7', and N3-C-7.5'-8'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size analysis. MPC MPA MPB Vent Well Figure 10. Cross Section of Vent Well and Monitoring Points at Facility 14 Showing Site Lithology and Construction Detail ### 4.2 Soil Analyses Results and Discussion Results of the soil analyses for BTEX and TPH at Facility 14 are presented in Table
12. Concentrations in soil samples were relatively low, with no detectable concentrations of benzene up to 7.1 mg/kg toluene. TPH concentrations ranged from 54 to 350 mg/kg. The results from the soil chemistry analyses are summarized in Table 13. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B. Table 12. Results From Soil Analyses for BTEX and TPH at Facility 14 | Sample Name | Benzene
(mg/kg) | Toluene
(mg/kg) | Ethylbenzene
(mg/kg) | Total Xylenes (mg/kg) | TPH¹
(mg/kg) | |--------------|--------------------|--------------------|-------------------------|-----------------------|-----------------| | N3-V-7'-7.5' | < 0.0035 | 7.1 | 0.049 | 0.22 | 350 | | N3-A-2'-3' | < 0.00070 | < 0.00080 | 0.0080 | 0.046 | 54 | | N3-A-6'-7' | < 0.00070 | < 0.00080 | < 0.00060 | 0.0019 | 68 | | N3-C-7.5'-8' | < 0.00080 | < 0.00090 | < 0.00060 | < 0.0011 | 83 | Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene. Table 13. Results From Soil Chemistry Analyses at Facility 14 | | | Sample Name | | | | | |---------------------------------------|------------|-------------------------|-------------------------|--|--|--| | Parameter | N3-V-6'-7' | N3-A-2'-3' ¹ | N3-A-6'-7' ¹ | | | | | Alkalinity (mg/kg CaCO ₃) | 380 | 290 | 280 | | | | | Moisture (% by weight) ² | 14.6 | 10.5 | 11.4 | | | | | рН | 8.1 | 7.8 | 7.8 | | | | | Iron (mg/kg) | 16,900 | 17,800 | 14,500 | | | | | Total Phosphorous (mg/kg) | 270 | 300 | 210 | | | | | Total Kjeldahl Nitrogen (mg/kg) | 240 | 240 | 110 | | | | ¹ Soil moisture was calculated on a duplicate sample. Results were N3-A-2'-3', 14.8; and N3-A-6'-7', 15.2. Soil moisture was calculated on two other samples. Results were N3-V-7'-7.5', 14.1; and N3-C-7.5'-8', 19.9. ### 5.0 BACKGROUND AREA A background vent well was installed on July 29, 1992 near Facility 27 (Figure 1). The depth of the vent well was 11.2 feet with 6.7 feet of screen using schedule 40, 2-inch-diameter, 10-slot PVC, and 4.5 feet of schedule 40, 2-inch-diameter PVC riser. The area corresponding to the screened section was surrounded by sand, and the remaining 4.5 feet were enclosed by bentonite to seal the vent well. Soil and soil gas samples were collected from the background area. The site lithology in this area was similar to that in the contaminated areas. Results of analyses for BTEX and TPH are shown in Table 14. No detectable concentrations of BTEX were found in the soil samples, and only minimal concentrations were found in the soil gas samples. TPH concentrations also were low in both soil and soil gas samples. The results from the soil chemistry analyses are shown in Table 15. The analytical report for these samples is provided in Appendix B. An in situ respiration test was conducted at the background area beginning on August 12 after 24 hours of air injection. The test was concluded on August 17. Biodegradation rates were relatively high in this area (Figure 11). These high rates could be due to the minimal amount of contamination present in this area, based on the soil samples. Table 14. Results From Soil and Soil Gas Analyses for BTEX and TPH at Background Area | Matrix | Sample Name | Benzene
(mg/kg) | Toluene
(mg/kg) | Ethylbenzene
(mg/kg) | Total
Xylenes
(mg/kg) | TPH¹
(mg/kg) | |----------|-----------------|--------------------|--------------------|-------------------------|-----------------------------|-----------------| | Soil | N-BKG-4.5'-5.0' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | 20 | | | N-BKG-8.5'-9' | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | NA | | | N-BKG-10 | < 0.0010 | < 0.0020 | < 0.0020 | < 0.0020 | <4.0 | | Matrix | Sample Name | Benzene
(ppmv) | Toluene
(ppmv) | Ethylbenzene
(ppmv) | Total
Xylenes
(ppmv) | TPH²
(ppmv) | | Soil Gas | N-BG | < 0.0020 | 0.0020 | < 0.0020 | 0.0020 | 13 | Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene. Table 15. Results From Soil Chemistry Analyses at the Background Area | | | Sample Name | | | | | |---------------------------------------|---------|---------------|---------|-----------|--|--| | Parameter | N-I | 3KG-4.5′-5.0′ | N-BK | G-8.5'-9' | | | | Alkalinity (mg/kg CaCO ₃) | | 36 | | 120 | | | | Moisture (% by weight) | | 12.9 | | 14.7 | | | | рН | | 6.4 | | 7.4 | | | | Iron (mg/kg) | | 13,000 | 1: | 5,700 | | | | Total Phosphorous (mg/kg) | | 480 | | 470 | | | | Total Kjeldahl Nitrogen (mg/kg) | | 730 | | 300 | | | | Particle Size Analysis (%) | Gravel: | 20 | Gravel: | 25 | | | | | Sand: | 45 | Sand: | 37 | | | | | Silt: | 26 | Silt: | 26 | | | | | Clay: | 9 | Clay: | 12 | | | ² TPH referenced to jet fuel (molecular weight = 156). NA Sample not analyzed for this parameter. Figure 11. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at the Background Area ### 6.0 FUTURE WORK Base personnel will be required to perform a simple weekly system check to ensure that the blower is operating within its intended flowrate, pressure, and temperature range. An on-site briefing was conducted for base personnel who will be responsible for blower system checks. The principle of operation was explained, and a simple checklist and logbook were provided for blower data. Base personnel will perform minor maintenance activities, such as replacing filters or gauges, or draining condensate from knockout chambers, but they will not be expected to perform complicated repairs or analyze gas samples. Replacement filters and gauges will be provided and shipped to the base and serious problems, such as motor or blower failures, will be corrected by Battelle. The progress of this system will be monitored by conducting semiannual respiration tests in the vent well and in each monitoring point, and by regularly measuring the oxygen, carbon dioxide, and hydrocarbon concentrations in the extracted soil gas and comparing them to background levels. Soil gas monitoring will be performed on a quarterly basis. At least twice each year, the progress of the bioventing test will be reported to the base point-of-contact. ### 7.0 REFERENCE Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frandt. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing (Rev. 2), Report prepared by Battelle Columbus Operations, U.S. Air Force Center for Environmental Excellence, and Engineering-Science, Inc. for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas. APPENDIX A TEST PLAN FOR NEWARK AFB 505 King Avenue Columbus, Ohio 43201-2693 Telephone (614) 424-6424 Facsimile (614) 424-5263 July 13, 1992 Captain Cathy Vogel HQ AFCESA/RAVW 139 Barnes Drive Tyndall Air Force Base, Florida 32403-5319 Dear Cathy: # SUBJECT: TEST PLAN FOR BIOVENTING INITIATIVE FIELD TEST AT FACILITIES 27 AND 89, NEWARK AFB, OH Attached is the report "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing." This document was developed as a generic test plan for the Air Force Bioventing Initiative Project in which Newark AFB is participating. This letter outlines site specific information to support the generic test plan. The sites chosen for the bioventing test initiative are Facility 27 (the base motor pool), with three fiberglass UST's (1000 gal. unleaded gasoline, 4000 gal. unleaded gasoline, and 4000 gallon diesel), and Facility 89 which is the site of a 20,000 gallon diesel tank. Both sites are active fuel dispensing facilities. At both facilities, site characterization data has indicated soil contaminated with petroleum hydrocarbons in the tank cavity and supply line backfill. The purpose of this project is to investigate the feasibility of using the bioventing technology to remediate petroleum contaminated soils at the Facility 27 and 89 sites. Figure 1 is a site diagram for Facility 27 showing soil sampling locations for two sampling events (October, 1991 and February, 1992). Table 1 presents the analytical data for each sampling event. The high permeability of the UST backfill relative to the native soils could cause short circuiting of air flow during the air permeability test. During the soil gas survey Battelle will try to identify an area adjacent to the UST system that is sufficiently contaminated for conduct of the test. Soil sample locations 1, 2, and 3 taken on February 6, 1992, appear to be the most promising locations for bioventing system installation. TABLE 1. SOIL CONTAMINANT CONCENTRATIONS AT FACILITY 27, NEWARK AFB, OH. # CONCENTRATION (mg/Kg) | | SAMPLE
LOCATION | DEPTH(ft) | TPH | BENZENE | TOLUENE | ETHYLBENZENE | XYLENE | |---|--------------------|-----------|-------|---------|----------|--------------|--------| | | 27-200 | 0.5 | 166 | BDL | BDL | BOL | .009 | | | 27-201 | 0.5 | 133 | BDL | BDL | BDL | BDL | | | 27-202 | 0.5 | 110 | BDL | BDL | BDL | BDL | | | 27-203 | 0.5 | 130 | BDL | BDL | BDL | .012 | | | 27-204 | 0.5 | 5,140 | .024 | <.230 | <.230 | .76 | | | 27-205 | 0.5 | 203 | BDL | BDL | BDL | BDL | | | 27-206 | 3 | 78 | BDL | BDL | BDL | BDL | | | 27-207 | | 96 | BDL | BDL | BDL | BDL | | | 27-208 | 1.5 | 158 | BDL | BDL | BDL | · BDL | | | 27-209 | 1.5 | 358 | BDL | .007 | .025 | .01,1 | | | 27-210 | 1.5 | 94 | BDL | BDL | BDL | BDL | | | 27-211 | 1.5 | 59 | BDL | BDL | BDL | BOL | | | 27-212 | 1.5 | . 57 | BOL | BDL | BOL | BDL | | | 27-213 | water | 0.766 | BOL | BDL | BOL | BDL | | | 27-1 | 1.5 | 1880 | NA NA | NA | NA NA | NA | | | 27-2 | 1.5 | 779 | NA | NA | NA NA | NA | | 4 | 27-3 | 1.5 | 254 | NA | NA NA | NA NA | NA | | | 27-4 | 2.5 | 55 | NA NA | NA NA | NA NA | NA . | | | 27-5 | 2.5 | 52 | NA NA | l
NA | NA · | NA | | | 27-6 | 2.5 | 675 | l NA | NA | NA NA | NA | | | 27-7 | 2.5 | 91 | l
NA |
 NA | NA | NA | BDL — BELOW DETECTION LIMIT NA — NOT APPLICABLE (samples analyzed for TPH only). FIGURE 1 - Facility 27, NAFB, Newark, Ohio Second Phase
Sampling, Feb. 6, 1992 Site diagram not to scale - Sample locations 10/9 & 10/10, 1991 - Sample locations 2/6/1992 mg/Kg = TPH values Figure 2 and Table 2 present the site diagram and the available soil analytical data for Facility 89, respectively. As with Facility 27, the soil sampling for Facility 89 was conducted in the UST backfill. As with Facility 27, an area adjacent to the fuel dispensing system will be identified for the test. It is possible that at one of the facilities, or possibly even both facilities, it may not be possible to identify an area outside of the UST backfill that is suitable for the bioventing field testing. If this should be the case, Battelle will consult with the project officer and the base POC to determine whether the field tests should be conducted in the UST backfill. An in situ respiration test could be conducted and a bioventing blower could be installed, but due to the underground obstructions, installation of soil gas monitoring points in optimum locations may be inhibited and air permeability data may be inaccurate. ### Project activities- ጟ The following field activities are planned for the bioventing project at Newark AFB. the same procedures will be followed at each site. Additional detail can be found in Section 5.0 of the attached test plan and technical protocol. - 1- A small scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system. The soil gas survey will be conducted adjacent to the fuel dispensing systems outside of the UST backfill. Soil vapor from the candidate site should exhibit high petroleum hydrocarbon concentrations, relatively low O₂ concentrations (typically 0 % to 2.0 %), and relatively high CO₂ concentrations (depending on soil type, 2.0 % to 10.0 % or more). An uncontaminated background location will also be identified. - Once the installation sites are located one vent well and three 3-level soil gas monitoring points will be installed in the contaminated location and one vent well and one 3-level soil gas monitoring point will be installed in the background area. The wells and monitoring points will be installed using a two-man power auger to bore down to just above the water table. Three to four soil samples will be collected for chemical/physical analysis. - 3- The air permeability test will be conducted in the contaminated test location. - 4- Following the air permeability test, in situ respiration tests will be conducted in both the contaminated and the background test locations. - Depending on the results of the air permeability test and the in situ respiration test, a decision will be made whether or not to install a blower system in the contaminated area for the long term bioventing test. If the decision is made to install, the blower will be plumbed to the vent well and bioventing will be started TABLE 2. CONTAMINANT CONCENTRATIONS AT FACILITY 89, NEWARK AFB, OH. # CONCENTRATION (mg/Kg) | SAMPLE
LOCATION | DEPTH(ft) | TPH | BENZENE | TOLUENE | ETHYLBENZENI | XYLENE | |--------------------|-----------|-------|---------|---------|--------------|--------| | 89-1 | 0.5 | 7240 | <.01 | .094 | .13 | 1.2 | | 89-2 | 4 | 145 | BDL | .006 | .016 | BDL | | 89-3 | 3.5 | 86 | BDL | BDL | .007 | BDL | | 89-4 | 3 | 283 | BDL | BDL | .008 | BDL | | 89-8 | 3 | 114 | NA. | NA | NA | · NA | | 89-9 | 3 | 214 | NA | NA | NA . | NA | | 89-10 | , 3 | 109 | NA | NA | NA [| NA | | 89-11 | . 3 | 164 | NA | NA . | NA NA | NA | | 89-14 | 3 | 122 | NA | ŊA | NA | .NA | | 89—15 | 1.5 | 108 | NA | NA | NA | NA | | 89—16 | 3 | . 261 | NA | NA | NA. | · NA | | 89-17 | 3 | . 194 | NA | NA | NA | NA | | 89—18 | 2 | 158 | NA | NA | NA | : NA | | 89-19 | . 4 | 98 | NA | NA | NA | NA | BDL - BELOW DETECTION LIMIT NA - NOT APPLICABLE (samplea analyzed for TPH only) FIGURE 2 - Facility 89, NAFB, Newark, Ohio Second Phase Sampling, Feb. 6, 1992 Site diagram not to scale Sample locations 10/9 & 1 ● Sample locations 10/9 & 10/10, 1991 ⊕ Sample locations 2/6/1992 mg/Kg = TPH values (assuming power is available). Site personnel will be trained for blower operation prior to Battelle leaving the site. 6- A report detailing the results of the in situ respiration test and the air permeability test will be provided to the project officer and the base POC. ### Schedule- Field activities at Newark are planned to begin on July 27, 1992. Battelle will have 2 to 3 people on site for approximately 3 weeks. ### Base Support- The Air Force needs to be able to provide the following: - Digging permits and utility clearance need to be obtained prior to the initiation of the field work. Underground utilities should be clearly marked to reduce the chance of utility damage or personal injury during soil gas probe and well installation. Due to the fact that both facilities are active fuel pumping systems, and the UST components are FRP, Battelle will not be able to begin field operations without these clearances. - Electrical power will need to be easily accessible from the project site. The air permeability test and in situ respiration test can be performed using a gasoline powered electric generator. It is desirable that a 50 amp 250 v single phase receptacle be available to plug in our field operations trailer (Hubbell plug cat. # S8269). The operation of the bioventing system will require a permanent 220/110 V power source. If power will not be available immediately after the test is completed the bioventing system will be installed for start-up at a later date. - Regulatory approval, if any is required, will need to be obtained by the base prior to start-up of the bioventing system. The system will likely be configured for air injection so there will be no point source vapor emission from the system. The wells to be installed will not intersect the apparent water table and no groundwater will be pumped. - Base and site clearance will be required for Battelle's site employees. We will furnish you with personal information for each person at least one week prior to starting field operations. Thank you for your support for this bioremediation research project. If you have any questions please feel free to call me at (614) 424-6122. Sincerely, Jeffrey A. Kittel Researcher Environmental Technology Department JAK:sh Enclosure ### APPENDIX B ANALYTICAL REPORT FOR FACILITIES 27, 89, AND 14, AND THE BACKGROUND AREA AN ENVIRONMENTAL ANALYTICAL LABORATORY ### **WORK ORDER #: 9208040** Work Order Summary CLIENT: Mr. Greg Headington BILL TO: Accounts Payable Battelle Engineering Science 505 King Ave. 1700 Broadway Ste. 900 Columbus, OH 43201 Denver, CO 80290 PHONE: 614-424-5417 **INVOICE # 8306** FAX: 614-424-3667 **P.O.** # DE268.03 DATE RECEIVED: 8/11/92 **AMOUNT: \$551.29** DATE REPORTED: 8/14/92 **PROJECT #** G4468-0630 | | | | Keceipt | | |------------|-------------|-------------|-------------|----------| | FRACTION # | <u>NAME</u> | <u>TEST</u> | VAC./Press. | PRICE | | 01A | N-BG | TO-3 | 2.0 "Hg | \$120.00 | | 02A | N1-A-6.5 | TO-3 | 1.5 "Hg | \$120.00 | | 03A | N1-V-11.2 | TO-3 | 1.5 "Hg | \$120.00 | | 04A | N1-C-8 | TO-3 | 1.0 "Hg | \$120.00 | | 05A | Lab Blank | TO-3 | NA. | NC | Misc. Charges 1 Liter SUMMA Canister Preparation (4) @ \$10.00 each. \$40.00 Shipping (8/3/92) \$31.29 DATE: 8/18/92 SAMPLE NAME: N-BG ID#: 9208040-01A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name: 6081104 Date of Collection: 8/10/92 Dil. Factor: 2.2 Date of Analysis: 8/11/92 | | | | | | | |---|--------|--------|--------------|--------------|--|--| | | MDL | MDL | Amount | Amount | | | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | | | Benzene | 0.002 | 0.007 | Not Detected | Not Detected | | | | Toluene | 0.002 | 0.008 | 0.002 | 0.007 | | | | Total Xylenes | 0.002 | 0.009 | 0.002 | 0.008 | | | | Ethyl Benzene | 0.002 | 0.009 | Not Detected | Not Detected | | | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608110-
2.: | | Date of Collect | rtion: 8/10/92
sis: 6/11/92 | |----------------------------|----------------|--------|-----------------|--------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.022 | 0.088 | 13 | 52 | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: N1-C-8 ID#: 9208040-04A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608111
4. | | Date of Collect
Date of Analy | etion: 8/10/92
sis: 8/11/92 | |----------------------------|--------------|--------|----------------------------------|--------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.004 | 0.013 | 0.005 | 0.016 | | Toluene | 0.004 | 0.015 | 0.006 | 0.022 | | Total Xylenes | 0.004 | 0.018 | Not Detected | Not Detected | | Ethyl Benzene | 0.004 | 0.018 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608111
4. | | Date of Collect
Date of Analy | tion: 8/10/92
sls: 8/11/92 | |----------------------------|--------------|--------|----------------------------------|--------------------------------| | _ | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.042 | 0.17 | 130 | 520 | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: Lab Blank ID#: 9208040-05A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608110
1. | | Date of Collect
Date of Analy | | |----------------------------|--------------|--------|----------------------------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.001 | 0.003 | Not Detected | Not Detected | | Toluene | 0.001 | 0.004 | Not Detected | Not Detected
| | Total Xylenes | 0.001 | 0.004 | Not Detected | Not Detected | | Ethyl Benzene | 0.001 | 0.004 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608110:
1. | | Date of Collect | | |----------------------------|---------------|--------|-----------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.010 | 0.040 | Not Detected | Not Detected | | | | | | | ^{*}TPH referenced to Jet Fuel (MW=156) 11325 SUNRISE GOLD CIRCLE, SUITE 'E' RANCHO CORDOVA, CA 95742 (916) 638-9892 • FAX (916) 638-9917 # CHAIN OF CUSTODY RECORD | REMARKS TO NO. DE 268.03 | M | | P | | |--|----------------------|----------------------------|------------------------|--------| | <u></u> |) DATE/TIME | ANALYSIS | VAC./PBESSUBF ABID # | + 5 | | N-86 Aie | 10 AUS92/1510 | BTEY / TV# | : N | 7/2030 | | AiR | 10 44692/1500 | // | (50, 60) | 7437 | | W/-V-11.2 Aik | 10 AUG 92/1520 | BTEX / | 1.6° Fe | 1871 | | N1-C-8 AiR | 10 AVE 92/ 1530 | 1530 BTEX / TUH | | 11434 | | | • | | |) | | | | | | T | | | | , v. | | | | | | | | 1 | | | | | | T | | | | | | | | このでは、 できない はない はない はない はない はない はない はない はない はない は | | | | | | RELINQUISHED BY: DATE/TIME RECEIVED | 3Y: DATE/TIME | RELINQUISHED BY: DATE/TIME | RECEIVED BY: DATE/TIME | | | Copyress. | کم | | | · | | |)₩00:h | | | | | | LABUSEONLY | | | | | SHIPPER NAME AIR BILL # | OPENED BY: DATE/TIME | TEMP(°C) | CONDITION | | | | | | | | | REMARKS | | | | 1 | | | | | | | | | | | | | | *** | | | | | - date AN ENVIRONMENTAL ANALYTICAL LABORATORY ### WORK ORDER #: 9208088 Work Order Summary CLIENT: Mr. Jeff Kittel BILL TO: Accounts Payable Battelle **Engineering Science** 505 King Ave. 1700 Broadway Ste. 900 Columbus, OH 43201 Denver, CO 80290 PHONE: 614-424-6122 **INVOICE #** 8372 FAX: 614-424-3667 P.O. # DE268.03 DATE RECEIVED: 8/21/92 **AMOUNT: \$474.64** DATE REPORTED: 9/1/92 **PROJECT #** G4468-0630 | | | | Keceipt | | |------------|-------------|-------------|-------------|----------| | FRACTION # | <u>NAME</u> | <u>TEST</u> | VAC./Press. | PRICE | | 01A | N1-AM-1230 | TO-3 | 0.5 "Hg | \$120.00 | | 02A | N1-EX-1210 | TO-3 | 0 "Hg | \$120.00 | | 03A | N1-EX-1220 | TO-3 | 0.5 "Hg | \$120.00 | | 04A | Lab Blank | TO-3 | NA . | NC | Misc. Charges 1 Liter SUMMA Canister Preparation (3) @ \$10.00 each. \$30.00 Shipping (8/13/92) \$84.64 REVIEWED BY: CERTIFIED BY: SAMPLE NAME: N1-AM-1230 ID#: 9208088-01A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608241i | | Date of Collect | etion: 8/19/92
sis: 8/24/92 | |----------------------------|---------|--------|-----------------|--------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.001 | 0.004 | Not Detected | Not Detected | | Toluene | 0.001 | 0.005 | Not Detected | Not Detected | | Total Xylenes | 0.001 | 0.006 | Not Detected | Not Detected | | Ethyl Benzene | 0.001 | 0.006 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Jet Fuel) | File Name:
Dil. Factor: | 608241
1. | | Date of Collect | tion: 8/19/92
sis: 8/24/92 | |----------------------------|--------------|--------|-----------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.014 | 0.056 | 0.088 | 0.35 | ^{*}TPH referenced to Jet Fuel (MW=156) ### Comments: Total hydrocarbon content reported as TPH but naphtha profile not present. Sample primarily made up of discrete solvents. SAMPLE NAME: N1-EX-1210 ID#: 9208088-02A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil, Factor: | 608241
1. | | Date of Collect
Date of Analy | etion:8/19/92
sis: 8/24/92 | |----------------------------|--------------|--------|----------------------------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.001 | 0.004 | 0.010 | 0.031 | | Toluene | 0.001 | 0.004 | Not Detected | Not Detected | | Total Xylenes | 0.001 | 0.004 | Not Detected | Not Detected | | Ethyl Benzene | 0.001 | 0.004 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Jet Fuel) | | | | tion:8/19/92
sis: 8/24/92 | |--------|---------------------|----------------------------|--| | MDL | MDL | Amount | Amount | | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | 0.013 | 0.052 | 130 | 520 | | | 1.
MDL
(ppmv) | 1.3 MDL MDL (ppmv) (uG/L) | 1.3 Date of Analy MDL MDL Amount (ppmv) (uG/L) (ppmv) | ^{*}TPH referenced to Jet Fuel (MW=156) ### Comments: Total hydrocarbon content reported as TPH but naphtha profile not present. Sample primarily made up of discrete solvents. SAMPLE NAME: N1-EX-1220 ID#: 9208088-03A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608241
6. | _ | Date of Collect
Date of Analy | tion:8/19/92
sis: 8/24/92 | |----------------------------|--------------|--------|----------------------------------|------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.007 | 0.021 | 0.023 | 0.072 | | Toluene | 0.007 | 0.025 | Not Detected | Not Detected | | Total Xylenes | 0.007 | 0.029 | Not Detected | Not Detected | | Ethyl Benzene | 0.007 | 0.029 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608241
6. | _ | Date of Collect | :tion:8/19/92
sls: 8/24/92 | |----------------------------|--------------|--------|-----------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.068 | 0.27 | 55 | 220 | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: Lab Blank ID#: 9208088-04A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608240
1. | | Date of Collect
Date of Analy | | |----------------------------|--------------|--------|----------------------------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.001 | 0.003 | Not Detected | Not Detected | | Toluene | 0.001 | 0.004 | Not Detected | Not Detected | | Total Xylenes | 0.001 | 0.004 | Not Detected | Not Detected | | Ethyl Benzene | 0.001 | 0.004 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 6082404
1.0 | | Date of Collect | | |----------------------------|----------------|--------|-----------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.010 | 0.040 | Not Detected | Not Detected | | | | | | | ^{*}TPH referenced to Jet Fuel (MW=156) 11325 SUNRISE GOLD CIRCLE; SUITE 'E' RANCHO CORDOVA, 'CA 95742 (916) 638-9892 • FAX (916) 638-9917 # CHAIN OF CUSTODY RECORD | Loub, tu | * | |--|------------------------------| | COLLECTED BY (Signature) | 13201 (414) 424-6122 | | PROJECT # 64468 - 0630 PO # 26 00, 26 03 PO # 268,03 | SOS KING AVE, , GLUMBUS OH , | | PROJECT
REMARK | | | FIELD SAMPLE I.D.# | SAMPLIN | DATE/TIME | | ANALYSIS | VAC./PRESSURE | LAB I.D. # | |--------------------|------------|--------------|---------|-------------------|---------------|------------| | NI-AM -1230 | CANSEL | | JUB NO. | JUB NO. DE 268.03 | 1 6" No | | | W1-6X-1212 | CANIS FOR | 1944692/1210 | | " | X 6/2/1/ | B | | NI-EX -1220 | Canis fee | 1994692/1220 | ,, | " | | alt . | | | | | | | | يد | | | | | | | 5 | V. | | | - | | | | | | | | · | | | | | | | | | | | | | | | | | 7 | • | | | | | | - CO AND - | | | | | | | | | | | | | | | RELINQUISHED BY: DATE/TIME | BECEIVED BY: DATE/TIME | BEI INO IISUED BY: DATE | |
--|--|--|------------------------| | 1 Mm (Co. 11 19 19 14 92) | יייטור/ יייטור/ יייטור/ יייטור | MELINGUISHED BT. DAI E/IIME | RECEIVED BY: DATE/TIME | | The same of sa | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | Cast) | | 75.0 | | | | The state of s | | | | | | | | | | | | | | | | | | | SHIPPER NAME | LL # OPENED BY: DATE/TIME | (TIME TEMP(°C) | CONDITION | | | | L | NOTIGNOO | | | | | | | | | | | | DEMADKS | | | | AN ENVIRONMENTAL ANALYTICAL LABORATORY ## **WORK ORDER #: 9208087** Work Order Summary CLIENT: Mr. Jeff Kittel BILL TO: Accounts Payable Battelle **Engineering Science** 505 King Ave. 1700 Broadway Ste. 900 Columbus, OH 43201 Denver, CO 80290 PHONE: 614-424-6122 **INVOICE #** 8370 Deceint FAX: 614-424-3667 P.O. # DE268.03 DATE RECEIVED: 8/20/92 **AMOUNT: \$548.27** DATE REPORTED: 9/1/92 **PROJECT #** G4468-0630 | | | | Keceipt | | |------------|-------------|-------------|-------------|----------| | FRACTION # | <u>NAME</u> | <u>TEST</u> | VAC./Press. | PRICE | | 01A | N2-V-3-10 | TO-3 | 1.0 "Hg | \$120.00 | | 02A | N2-C-9 | TO-3 | 1.0 "Hg | \$120.00 | | 03A | N2-C-6.5 | TO-3 | 1.0 "Hg | \$120.00 | | 04A | N2-AM | TO-3 | 1.0 "Hg | \$120.00 | | 05A | Lab Blank | TO-3 | NA O | NC | Misc. Charges 1 Liter SUMMA Canister Preparation (4) @ \$10.00 each. \$40.00 Shipping (8/14/92) \$28.27 REVIEWED BY: CERTIFIED BY: SAMPLE NAME: N2-V-3-10 ID#: 9208087-01A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name;
Dil. Factor; | 608240
2 | | Date of Collect | etion: 8/18/92
sis: 8/24/92 | |----------------------------|-------------|--------|-----------------|--------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.021 | 0.066 | Not Detected | Not Detected | | Toluene | 0.021 | 0.077 | Not Detected | Not Detected | | Total Xylenes | 0.021 | 0.089 | Not Detected | Not Detected | | Ethyl Benzene | 0.021 | 0.089 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608240
21. | | | tion: 8/18/92
sls: 8/24/92 | |----------------------------|---------------|--------|--------|--------------------------------| | , | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.21 | 0.84 | 74 | 300 | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: N2-C-9 ID#: 9208087-02A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608240
2. | | Date of Collect
Date of Analy | etion:8/18/92
sis: 8/24/92 | |----------------------------|--------------|--------|----------------------------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.002 | 0.007 | 0.003 | 0.009 | | Toluene | 0.002 | 0.007 | 0.006 | 0.019 | | Total Xylenes | 0.002 | 0.007 | 0.004 | 0.012 | | Ethyl Benzene | 0.002 | 0.007 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608240
2. | | Date of Collect | tion:8/18/92
sls: 8/24/92 | |----------------------------|--------------|--------|-----------------|------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.021 | 0.084 | 3.5 | 14 | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: N2-C-6.5 ID#: 9208087-03A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608240
2. | 7 | Date of Collect | stion:8/18/92
sis: 8/24/92 | |----------------------------|--------------|--------|-----------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.002 | 0.007 | 0.008 | 0.025 | | Toluene | 0.002 | 0.008 | 0.027 | 0.099 | | Total Xylenes | 0.002 | 0.009 | 0.012 | 0.051 | | Ethyl Benzene | 0.002 | 0.009 | 0.002 | 0.008 | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608240
2. | | Date of Collect
Date of Analys | tion:8/18/92
sls: 8/24/92 | |----------------------------|--------------|--------|-----------------------------------|------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.021 | 0.084 | 7.8 | 31 | | | | | | | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: N2-AM ID#: 9208087-04A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608240
2. | | Date of Collect
Date of Analy | etion: 8/18/92
sis: 8/24/92 | |----------------------------|--------------|--------|----------------------------------|--------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.002 | 0.007 | Not Detected | Not Detected | | Toluene | 0.002 | 0.008 | Not Detected | Not Detected | | Total Xylenes | 0.002 | 0.009 | Not Detected | Not Detected | | Ethyl Benzene | 0.002 | 0.009 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 6082409
2.1 | | Date of Collec
Date of Analy: | tion: 8/18/92
sls: 8/24/92 | |----------------------------|----------------|--------|----------------------------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.021 | 0.084 | 0.44 | 1.8 | | | | | | | ^{*}TPH referenced to Jet Fuel (MW=156) SAMPLE NAME: Lab Blank ID#: 9208087-05A ### **EPA Method TO-3** (Aromatic Volatile Organics in Air) ### BTXE BY GC/PID | File Name:
Dil. Factor: | 608240
1. | | Date of Collect
Date of Analy | | |----------------------------|--------------|--------
----------------------------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.001 | 0.003 | Not Detected | Not Detected | | Toluene | 0.001 | 0.004 | Not Detected | Not Detected | | Total Xylenes | 0.001 | 0.004 | Not Detected | Not Detected | | Ethyl Benzene | 0.001 | 0.004 | Not Detected | Not Detected | # TOTAL PETROLEUM HYDROCARBONS GC/FID | File Name:
Dil. Factor: | 608240-
1.i | | Date of Collect | | |----------------------------|----------------|--------|-----------------|--------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Compound | (ppmv) | (uu/L) | (bbma) | (uG/L) | | TPH* | 0.010 | 0.040 | Not Detected | Not Detected | ^{*}TPH referenced to Jet Fuel (MW=156) ١ 11325 SUNRISÈ GOLD CIRCLE, SUITE 'E' RANCHO CORDOVA, CA 95742 (916) 638-9892 • FAX (916) 638-9917 # CHAIN OF CUSTODY RECORD Page of PO# E-5 Job No DE 268.03 COLLECTED BY (Signature) A 2717-124 (MA) PROJECT # 6 4468-0630 REMARKS SEND 1050275 | | _ | _ | 1 | |
7 |
 | | , | |--|----------------------------|-----------------|-------------------|-----------|-------|------|-----|---| | LAB I.D. # | | | | | | | , A | | | VAC./PRESSURE | /%// | | XUB | | | | | | | ANALYSIS | 1378 / TPH | RTOX / LOU | 111/20 | BTEX /TP4 | | | | | | DATE/TIMĘ | 18 AUG 92/1626 13TEX 1 TPH | 78 AUB 92/ 1435 | 18 AVE 52 /1650 | | | | | | | FIELD SAMPLE I.D.# SAMPLING MEDIA (Tenax, Canister etc.) | CANISTER 11:LEN | CANISTER 1 1:La | MANISTER / 1. FEX | 1 1.ta | | | | | | FIELD SAMPLE I.D.# | NQ-1-3-10 | N2-C-9 | N2-C-6.5 PAYISTER | N2- AM | | | | | | REMINOUISHED/BY/DATE/TIME | RECEIVED BY: DATE/TIME | STAY NO CENTION ON | | |---------------------------|---|-----------------------|---| | 5 July 1 18 AV6 92 | יירטריי בייני | SIZIONE BT. DAIE/IIME | IIME RECEIVED BY: DATE/TIME | | 08/) / | | 3 | 000000000000000000000000000000000000000 | | | | LAB USE ONLY | 646 245 244 | | SHIPPER NAME AIR BILL# | .# OPENED BY: DATE/TIME | TIME TEMP(°C) | CONDITION | | | | | | | REMARKS | | | | | | | | | BERKELEY LABORATORY 600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 841-7353 Report Date: September 9, 1992 Work Order No.:4231 Client: Jeff Kittel Battelle 505 King Ave. Columbus, OH 43201 Date of Sample Receipt: 08/11/92 Your soil samples identified as: N1-A-4'-4.5' N-BKG-4.5'-5.0 N1-A-8'-9' were analyzed for BTEX by EPA Method 8020, pH, alkalinity, iron, total kjeldahl nitrogen, soil mositure, TRPH by EPA Method 418.1, soil classification and total phosphorus. In addition your soil samples identified as: N2-V-4.3'-4.8' N2-V-9.0'-9.5' N2-C-10' N-BKG-10 were analyzed for BTEX by EPA Method 8020, soil mositure, and TRPH by EPA Method 418.1. Finally your soil samples identified as: N2-V-3'-4' N2-V-8'-9' N-BKG-8.5-9' were analyzed for pH, alkalinity, iron, total kjeldahl nitrogen, soil mositure, soil classification and total phosphorus. The analytical reports for the samples listed above are attached. ## AIR TOXICS LTD. SAMPLE NAME: N1-A-6.5 ID#: 9208040-02A #### **EPA Method TO-3** (Aromatic Volatile Organics in Air) #### BTXE BY GC/PID | File Name:
Dii. Factor: | 608110
2. | | Date of Collect Date of Analy | etion:8/10/92
sis: 8/11/92 | |----------------------------|--------------|--------|-------------------------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.002 | 0.007 | 0.046 | 0.14 | | Toluene | 0.002 | 0.007 | 0.008 | 0.025 | | Total Xylenes | 0.002 | 0.007 | 0.003 | 0.009 | | Ethyl Benzene | 0.002 | 0.007 | Not Detected | Not Detected | ## TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Jet Fuel) | File Name:
Dil. Factor: | 608110
2. | | Date of Collect
Date of Analy | stion:8/10/92
sls: 8/11/92 | |----------------------------|--------------|--------|----------------------------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.021 | 0.084 | 2200 | 8800 | *TPH referenced to Jet Fuel (MW=156) ## AIR TOXICS LTD. SAMPLE NAME: N1-V-11.2 ID#: 9208040-03A #### **EPA Method TO-3** (Aromatic Volatile Organics in Air) #### BTXE BY GC/PID | File Name:
Dil. Factor: | 608110
1 | | Date of Collect
Date of Analy | tion:8/10/92
sis: 8/11/92 | |----------------------------|-------------|--------|----------------------------------|------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | Benzene | 0.011 | 0.034 | Not Detected | Not Detected | | Toluene | 0.011 | 0.040 | 0.056 | 0.21 | | Total Xylenes | 0.011 | 0.047 | 0.31 | 1.3 | | Ethyl Benzene | 0.011 | 0.047 | 0.026 | 0.11 | # TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Jet Fuel) | File Name:
Dii. Factor: | 608110
1 | | Date of Collect | stion:8/10/92
sls: 8/11/92 | |----------------------------|--------------------|--------|-----------------|-------------------------------| | | MDL | MDL | Amount | Amount | | Compound | (ppmv) | (uG/L) | (ppmv) | (uG/L) | | TPH* | 0.11 | 0.44 | 800 | 3200 | ^{*}TPH referenced to Jet Fuel (MW=156) #### GC ANALYTICAL REPORT Analytical Method BTEX Aromatic Compounds By 8020 Work Order NO.:4231 % Moisture:14 Client ID:N1A8'-9' Matrix:SOIL Laboratory ID:4231-10 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed:08-12-92 Date Confirmed: NA | === | Compound | Result | Reporting
Limit | | |-----|-----------------|--------|--------------------|--| | | | | | | | | Benzene | ND | 1.0 | | | | Ethyl Benzene | ND | 2.0 | | | | Toluene | ND | 2.0 | | | | Xylenes (total) | ND | 2.0 | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: / GROUP LEADER: Land Work Order No.: 4231 % Moisture:NA Client ID:(BLANK) Matrix:SOIL Laboratory ID:MSVG3920811 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed:08-11-92 Date Confirmed:NA | Compound | Result | Reporting
Limit | | |-----------------|--------|---|----| | | | :====================================== | == | | Benzene | ND | 1.0 | | | Ethyl Benzene | ND | 2.0 | | | Toluene | ND | 2.0 | | | Xylenes (total) | ND | 2.0 | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LA #### GC ANALYTICAL REPORT Analytical Method BTEX Aromatic Compounds By 8020 Work Order No.: 4231 % Moisture: NA Client ID:(BLANK) Matrix:SOIL Laboratory ID:MSVG3920812 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08-12-92 Date Confirmed:NA | Compound | Result | Reporting
Limit | | |-----------------|--------|--------------------|--| | | | | | | Benzene | ND | 1.0 | | | Ethyl Benzene | ND · | 2.0 | | | nenyi benzene | ND | 2.0 | | | Toluene | ND | 2.0 | | | Xylenes (total) | ND | 2.0 | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LA #### SURROGATE PERCENTAGE RECOVERY BTEX AROMATIC COMPOUNDS BY 8020 MATRIX: SOIL COLUMN ID: VGC3-VOCOL LABORATORY NO. a-a-a-TRIFLUOROTOLUENE | MSVG3920 | 811 | : | 101 | |----------|------|---|-----| | SSVG3920 | 811A | : | 107 | | SSVG3920 | 811B | | 98 | | 4231-05 | 5 G | | 148 | | 4231-07 | 5 G | | 112 | | 4231-08 | 5G | - | 110 | | MSVG3920 | 812 | - | 107 | | 4231-01 | 5 G | | 132 | | 4231-02 | 5 G | | 112 | | 4231-06 | 5 G |] | 142 | | 4231-10 | 5 G | 1 | 145 | TPH/GASOLINE DATA PACKAGE Method: 418.1 Date Extracted: 08/12/92 #### ORGANIC ANALYTICAL REPORT Work Order NO.: 4231 Parameter: TPH Matrix: Soil _ _ Unit: mg/Kg Analytical Analytical QC Batch NO.: S92QCB019TPH Date Analyzed: 08/21/92 | 排放证据证据证据证据 网络 | | | | | |---------------|---------------|--------|--------------------|---------------------| | Sample ID: | Client ID: | Result | Reporting
Limit | Percent
Moisture | | 4221 01 | | | | ********* | | 4231-01 | N2-V4.3'-4.8' | 31 | 5 | 15.7 | | 4231-02 | N2-V9.0'-9.5' | . ND | 5 | 26.1 | | 4231-05 | N1A4'-4.5' | 49 | 5 | 18.2 | | 4231-06 | N2C10' | ND | 5 | 20.7 | | 4231-07 | NBKG4.5'-5.0' | 20 | 5 | 12.9 | | 4231-08 | NBKG10 | ND | 4 | 10.6 | | 4231-10 | N1A8'-9' | 36 | 5 | 14.0 | | MSTPH920812 | METHOD BLANK | ND | 4 | NA | NA_ Not Analyzed ND_ Not Detected ANALYST: Man S___ GROUP LEADER, Misms ## ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate Work Order NO.: 4231 QC Sample NO.: SSTPH920812A & B Analytical Method: 418.1 Blank I.D.: MSTPH920812 Matrix: Soil QC Batch NO.: S92QCB019TPH Unit: mg/Kg | Parameter | Date
Analyzed | BR | SA | BS | PR | BSD | PR | RPD | | |-----------|------------------|----|-----|-----|----|-----|----|-----|----| | ТРН | 08/21/92 | | 165 | 158 | 96 | 162 | 98 | 3 | == | BS-Blank Spike BSD-Blank Spike Duplicate SA-Spike Added BR_Blank Result NA-Not Applicable NC-Not Calculated ND-Not Detected RPD=((BS-BSD)/((BS+BSD)/2))*100 PR=((BS OR BSD -BR)/SA)*100 ANALYST: QUALITY CONTROL: -----JA ## INITIAL CALIBRATION SHEET HORIER OIL CONTENT ANALYZER | метноо : <u>418-1</u> | _ | |-----------------------|---| |-----------------------|---| INSTRUMENT SERIES : EXT-5- 920821 . STANDARDS PREP REF : LNN- 288-75-01,02, 03, 04, 05 4.0: 80.(z) = 08-2/-92 RUN DATE : _08-21-92 ## CALIBRATION DATA STO CONCENTRATIONS IN mg/L STO 1 = 84 STO 2 = 42 STO 5 = 21 STO 4 = 10 STO 5 = 5 | L | | | | KEAUING. | (mig/L) | <u> </u> | AUG RONG | |------------|---------------------|------|----------|-----------|-----------|-------------------|-----------| | ו. פאיאט ו | SAMPLS | E IO | REP 1 | REF Z | I REF 3 | 1 REF 4 | REP 2-5-4 | | 1 | FREON | | l
- O | 1 -0] | 1 -01 | · | - 1 | | _ 2 | std. | 1 | 1 60- | 72 | 1 72 |]
] | 72 | | 3 | !
! Std. | 2 | 1 42 | 1 36 | 1
1 36 | | 36 | | 4 | std. | 3_ | 1 . 20 | 1 16 | 1 16 | | 16 | | 5 | std. | 4 | 1 9 | 1 7 | 7 | l .
<u>l</u> . | 7 | | 6 | 1
1 <i>Std</i> · | 5 | l
1 3 | <u>
</u> | 1 2 | | 1 2 | | • | | | <u> </u> | <u> </u> | 1 | | <i>,</i> | | | | · | <u> </u> | l.
] • | 1 | 1 | 1 | | | | | | | * | | | CALLERATION CURVE : CONC. FOUND = m(AUG. RONG) + b WHERE m = SLOPE OF CURVE = 1.135 b = Y INTERCEPT OF CURVE = 2.022 CORRELATION COEFFICIENT OF LINEAR REGRESSION r = 0.9997 IS F WITHIN LIMITS (F \geq .995) Yes IF F \leq .995 REPEAT CALIBRATION WITH FRESH STOS. | COMMENTS | : | • | |----------|---|---| | | , | | | | | | 1)/5 8/24/4- ## CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER | | | . • | U0 V 1 E P | א טור לנ | THIENT | ANALYZEI | ₹ | | | | |--------------|-------------|---------------------|----------------|-------------|------------------|--------------------|--------------|--------------|--------------------------|--------------| | METHO |) : | 418,1 | | | | , t | 10 HO. 1 | (\$): | | | | MSTRU | JME | INT SERIES : | EXT-5- | 92 | 0821 | | | | | _ | | | | S PREP REF | | | | | | | 1 - 1 - 1 - 1 | | | יוענוה | kri | fication Std | - <u>LNN</u> - | -288 | Sec 1~1
76-01 | ('4') | | | | | | | | | | | • | , | | | | | | א אר | 1 | SOMBLE IN |
 | 050 41 | READIN | GS (mg/l | -) | AUG RONG | 1 / 1 | } | | 7 | <u>ا</u> بن | SAMPLE ID | NT COLL | -O-11 | NEP Z | 1 867 7 | REP 4 | REP 2+5+ | 4) DIFF. | Ĺ | | | 81 | | <u> </u> | 14 | 16 | 1 16 | 16 | | / | Ī | | 9 | | MSTPH920812 | | @-011 | -01 | | 16 | 16 | 1 96 | [(20.195/ | | | | SSTPH9208/2A | | 25 1 | 32 | -01
33 | 33 | <u> </u> | | <u>'</u> | | // . | | SSTPH920-812B | | 34 1 | 34 | <u> </u> | ا دو | 33 | | _ | | | <u>121</u> | | | 467 | | ! | <u>-</u> | 34 | | <u> </u> | | 2 | | u l | 1414 | 164 | 123 | <u> </u> | | | | <u> </u> | | | 141 | 1 | 1+29 | . 55 1 | 47 | 46 | 46 | 46 | ! | | | 4 | | 4208-02 1 | | 229 | 255 | 1 | 76 | 76 | | <u> </u> | | | 61 | // | 1+19 | 33 | 22 | 17 1 | 17 1 | 17 | | <u>!</u> . | | 17 | | 4208-03 | | 160 1 | 181 | 1 181 1 | | | | Ļ | | | 181 | | 1+29 | 38 | 16 | /3 | /3 1 | . 13 | | | | <i>i</i> | | CCB 1 | | -01 | -01 | <u> </u> | | _1 | | <u> </u> | | | <u>2a.</u> | | 1 | 14 1 | 16 | 16 | 1 | 16 | 1 91 | (20.1979/ | | 2)
2) | 271 | 4213-11 | | 2 1 | -0 | -0 1 | | 0 | ! (8 | | | | 221 | 4231-01 1 | | 3 ! | 4 1 | 4 1 | 1 | 4 | <u> </u> | L | | | | | | 0 | -01 | -01 1 | | -/ | | . | | 2 | 241 | -05 | | 6 1 | 7 | アー | | 7 | <u> </u> | _ | | zi | 261 | -06 <u> </u>
-07 | | | | -0/ 1 | -01 | -1 | 1 1 | - | | 27 | 1 | -08 I | | | | 2 | | 2 | | | | 4 | 281 | -10 | | -01 1 | -01 | -011 | | (| İ | - | | × | | MSTPH920818 1 | | 4 1 | _5_! | 5 | | | | - | | | 01 | SSTPH920818A 1 | | -02
36 | -02: | -02 | | <u>-></u> | 1 | - | | 7/ | 1 | CCB | | -01 I | 36
-02 | 36 | L | 36 | - | <u>.</u> | | 3 | 2 | CCV | <u> </u> | . 12 1 | | -02 | | _2 | | | | 33 | | SSTPH92081881 | | 35 | 35 | 16 | 16 | | 1961 | (20.1973/ | | 3 | 41 | 4212-01 | | 5 1 | | 36 | 36 | 36 | | :
- | | 35 | | 4212-02 1 | | 41 | 5 | -01 <u> </u>
-5 | <u>-0/ </u> | | | | | | 6 | -03 | | 0 | 0 1 | 0 | _5 | <u> </u> | | . . , | | ?7 | | 4227-01 | | -02 | -02 | | | <u> </u> | | • | | 3 | 81 | -02 | | -011 | -01 | | <u>_</u> | -1 | | • | | 34 | | 4235-01 1 | | -011 | -021 | -02 1 | | - 2- | | • | | | ~ - | | | | | | | - L | | • | | 1. | r (| ок сонтіниін | G CALIE | RATION | CHECK 2 | ONLY : | K DIFF : | = R1-R2 | 1.00 | | | 100 0 | | | | | | | | | | | | THERE O | 、
こつ | IS THE CONCI | -NTRATI | ON OF S | STD-3 F | ROM THE | INITIA | _ CALIBRAT | רווחא | | | ישבולי הו | \ Z .
[| IS THE CONCI | -N [RAT] | ON OF S | 3 TO 3 F | ROM THE | CALIER | ATION CHE | . 1 011
CK | | | , D | וו'ו | IS >15.0 R | LUBLIBE | CATE AND | ALYZER | BEFORE A | SUNNING | ANY MORE | SAMPLES | | | 2. | RU | IN CONTINUIN | ב רפו זה | FOTTON | 0.E.T.E.E. | | | | | | | | | | י יחנונ | אטנואאי | HETER | EUERY 10 | SAMPLE | | , , | , | | . . | | • | | | | | | | / DS 8/2 | 4/2 | | | Γ | MMENTO . | | | | | | | 1 | | #### CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER | METHOD: <u>4/8·1</u> | WO NO. (s) :, | |--|----------------------| | THSTRUMENT SERIES : EXT-5- 920821 | RUN DATE : 08/21/902 | | TANDARDS PREP REF : Venf. sta: 288-76-01 | / / 4.5 08/21/1 | | | i | | 1 | | READING | GS (maz | 1 1 | AUG RONG | 1 | 1 | |---|--|---------------|----------------|-------------|---------|--------------|----------|--------------|----------------|----------------| | _ | <u> NO.L</u> | SAMPLE ID | <u> 10TLUT</u> | REP 1 | L REP 2 | REP 5 | I REP AL | REP 2+5+2 | inger
inger | 1 | | 40 | | 4235-02 | 1 | -02 | 1 -02 | | 1 | - 2_ | 1 | <u>.</u> | | | 411 | -03 | 1 | – 2. | -2 | | 1 | | <u>. :</u> | | | 2_ | | -04 | | 0 | 0 | | 1 1 | 0 | 1 | | | | 431 | CCB | | - 2 | -2 | | 1 | -2 | | <u> </u> | | 44 | | CCV | | 12 | 16 | 16 | | 16 | 1 96 | (an in med) | | | 451 | 4235-05 | | | i 4 i | 4 | 1 1 | 4 | 1 | (20.19 26/2) | | 晃 | | -06 | | 465 | | | 1 | | 1 | <u> </u> | | <u> </u> | 471 | -06 | 1+29 | 140 | 63 | 63 | 63 | 63 | _ <u></u> | <u> </u> | | 13 | <u>. </u> | 4238-03 | | 7 | | 7 | 1 1 | | <u> </u> | '- | | | 481 | _04 | 1 | 50 | 62 1 | 62 | 1 1 | 62 | :1 | <u> </u> | | 49 | | -05 | | - 11 | -1 1 | -1 | 1 | -1 | 1 | 1 | | | 501 | -06 | 1 | 400 | | | 1 1 | | | | | - | | -06 | 1+29 | 46 | 37 1 | 37 | j (| 37 | 1 | 1 | | | 52:1 | -07 | | 06 | 0 | 0 | <u> </u> | 0 | <u></u> | ! | | 23 | | 4243-01 | | 01 1 | 01 | 01 | 1 | | - | 1 | | | 541 | <u>CCB</u> | | -2 | -2 | | <u> </u> | -2 | <u> </u> | <u></u> | | <u></u> | | cev | <u> </u> | 12 | 16 1 | 16 | <u> </u> | 16 | 196 | [(20.19 = 5/2) | | : | 56! | 4243-01 MS | l i | 30 | 34 | 34 | | 34 | 1 / 6 | | | <u> </u> | | -01 MSD | | 36 | 36 | 36 | | 36 | 1 | <u>L</u> | | 1 | 182 | -02 | | 03 | 0 1 | 0 | ! | 0 | | -
- | | :59 | 1_ | -03 | | 4 | 4 1 | 4 | l I | 4 | <u>!</u> | .
I | | | 601 | -04 1 | | _5 | 5 1 | 5 | | 5 | <u> </u> | <u>.</u> | | 4 | | MWTPH920819 | | 0 | -2: | -2 | | -2 | <u> </u> | <u>∟</u>
I | | 1/2 | | RWTPH920819A1 | | 30 | 3/ 1 | 31 | | 31 | <u> </u> | ≒
• | | 63 | | WTPH920819 B | | 31 | 3/ | .3/ | | 31 | 1 | ≂
I | | 4 | 641 | 4212-04 1 | | 3 | -01 | -01 | | -1 | <u> </u> | - , | | | | 4235-07 | | -2 | -2 | -2 | | -2 | | • | | ! | 661 | CCB | | <u> </u> | -2 | | | -2 | !
 | - | | | | CCV | | 12 | 16! | 16 | | 16 | 196 | (20.19 ms/c) | | | 681 | 4238-01 1 | 1 | -2 | -2 | -2 | I | -2 | | | | 69 | ! | 4243-05 | | -2 | -2 | | | ~ 2 | | • | | | <u>701</u> | 4248-02 1 | | -2 | -2 | | [| | <u> </u> | • | | -t | 72 | CCB | <u> </u> | -2 | -2 | } | 1 | | | • | | | - | Cev | | 12 | 16 | 16 | | 16 | 96 | (20.19mg/c | | | ı. ru | R CONTINUIN | IG CALI | BRATION | CHECK | ONLY | % DIFF = | R1-R2 | 100 | , , | R1-R2 100HERE R1 IS THE CONCENTRATION OF STD 3 FROM THE INITIAL CALIBRATION WHERE R2 IS THE CONCENTRATION OF STD 3 FROM THE CALIBRATION CHECK % DIFF IS >15.0 RECALIBRATE ANALYZER BEFORE RUNNING ANY MORE SAMPLES | 2. | RUN | CONTI | HUING | CALIBRATION | AFTER | EVERY | 10 | SAMPLES | | 1048/m/n | |----|------|-------|-------|-------------|-------|-------|----|---------|-------------|----------| | | 1M00 | 1ENTS | : | | | | | | | • | | | • | | | | · | | | | | | | | | | | | · | | | | | • | | P | A | G | Ε | o | f | | |---|---|---|---|---|---|--| | | | | | | | | #### DATA SUMMARY SHEET HORIBA OIL CONTENT ANALYZER | METHOD | : | _418 | 11 | |--------|---|------|----| | | | | | WO NO. (s) : ____ INSTRUMENT SERIES = EXT-5- 720621 RUN DATE = 08/2//52 STANDARDS PREP REF = See (al she f Q C BATCH # = ____ ANALYST = $AS / D\Delta$ | |] | CONC | EXTRACT | 1 1 | SAMPLE | 1 | I ETWAL . | |---|--------------------------------|-------------|--|--|----------|---------------|------------| | | 1 | FOUND | | IDILUT | AMOUNT | 1 % | FINAL | | . | <u> I SAMPLE ID I AUG RONG</u> | l (mg/L) | (mls) | <u>IFACT</u> OR I | (m)/am) | | 1 CONC 1 | | | MSTPH9-82/1 -1 | 1 0.89 | 1 100.0 | 1 1 | 25.0 | | (~57K5) | | - | 1557PH9U8ZIA 33 | 1 39.49 | 1 \ | 1 1 | 4 . 5 | NA | 13.55 | | | 155TPH940f2151 34 | 1 40.62 | 1 | 1 1 | | | 1 157.96 1 | | | 4208-1 1, 46 | 1 54.25 | 1 | 301 | | | 1 /62.50 | | | -202 17 | 1 21.32 | i / | 120 1 | | 79.0 | 18,240. | | | -3 13 | 1 16.78 | 1 | 1 30 | | 191.8 | 1 1,858. | | • | 4213-11 1 0 | 1 7.02 | | 1 1 | | 92.2 | 17,184. | | | 4237-01 4 | 1 6-56 | 1 /00.0 | <u>' </u> | 3 | NA | 1 8.09 1 | | | -02 -/ | 0.89 | 1 | | 25.> | 84.3 | 1 3/. / | | | -05 7 | 1 9.97 | | <u> </u> | | 73.4 | 4.8 | | | -06 -/ | 1 0.89 | | | | 81.8 | 1 48.8 | | ** | -07 1 7- | 1 4.29 | | | | 79.3 | 4.49 | | | -08 -1 | 0.89 | | | | 87.1 | 19.7 | | | -/0 5 | 1 7-70 | | <u> </u> | | 89.4 | 3.98 | | | | 1 | <u>. </u> | <u> </u> | | 86.0 | 1 35.8 | | لــا | | 1 |)
] | | | | L | | | | i | <u> </u> | | | | <u> </u> | | لــــــــــــــــــــــــــــــــــــــ | | <u> </u> |
 | <u> </u> | | | L | | | | , | 1 | <u> </u> | | | <u></u> | | | | <u> </u> | L | ! ! | | | <u> </u> | | | | 1 | l | <u> </u> | | ———— <u> </u> | <u> </u> | | | | | I | <u> </u> | | <u></u> | | | i | | <u></u> | <u></u> - | <u> </u> | <u>-</u> | | | | | | | l | <u> </u> | | | | | | | <u> </u> | <u> </u> | <u> </u> | | <u>_</u> _ | | | | | | L | <u> </u> | l | | | | | | 1 (mg/j2s) | RECOVERY | Ì | |--------------|-----|------------|----------|-------| | 5570H922821A | 165 | 158 | 96 | 3-59. | | | | | | T T | | | | | | i i | COMMENTS : ____ QC Review 103 8/13/5 = ##
INORGANICS DATA PACKAGE #### INORGANICS ANALYTICAL REPORT Client: Project: ES-Denver Newark AFB Work Order: Matrix: 4231 Solid Client's ID: N2-V N2-V -4.3'-4.8' -9.0'-9.5' N2-V -3'-4' Sample Date: 07/31/92 07/31/92 07/31/92 % Moisture: Lab ID: 4231.01 4231.02 4231.03 | Parameter | | Results | | Mormal
Method Report
Limit | | Units | Date
Analyzed | | |------------|------|---------|------|----------------------------------|----|-------------|------------------|--| | Alkalinity | NR | NR | 420. | SM 403(M) | 50 | mg/Kg CaCO3 | 08/12/92 | | | Moisture | 15.7 | 26.1 | 15.0 | ASTM D2216 | .1 | % by wt | 08/14/92 | | | рH | NR | NR | 7.8 | EPA 9045 | NA | pH Units | 08/13/92 | | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis Not Requested ANALYST: #### INORGANICS ANALYTICAL REPORT | Client:
Project: | ES-Denver
Newark AFB | | | Work Orde:
Matrix: | r: | 4 231
Solid | | |------------------------------|-------------------------|---------------------|------------------|-------------------------------------|---------------------------|------------------------------------|----------------------------------| | Client's ID | : N2-V
-8'-9' | N1-A
-4'-4.5' | N2-C
-10' | | | | | | Sample Date: | 07/31/92 | 07/30/92 | 08/01/92 | | | | | | Lab ID: | 4231.04 | 4231.05 | 4231.06 | | | | | | Parameter | | Results | | Method | Normal
Report
Limit | Units | Date
Analyzed | | Alkalinity
Moisture
pH | 490.
16.8
7.7 | 410.
18.2
7.7 | NR
20.7
NR | SM 403(M)
ASTM D2216
EPA 9045 | 50
5 . 1
NA | mg/Kg CaCO3
% by wt
pH Units | 08/12/92
08/14/92
08/13/92 | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis, Not Requested ANALYST: Non Sleaton #### INORGANICS ANALYTICAL REPORT | Ì | Client:
Project: | ES-Denver
Newark AFB | | | Work Order Matrix: | r: | 4231
Solid | | | |----------|------------------------------|-------------------------|------------------|---------------------|-------------------------------------|---------------------------|------------------------------------|----------------------------------|--| | | Client's ID: | N-BKG
-4.5'-5.0' | N-BKG
-10 | N-BKG
-8.5'-9' | | | | | | | ' | Sample Date: % Moisture: | 07/28/92 | 07/28/92 | 07/28/92 | | | | | | | ľ | Lab ID: | 4231.07 | 4231.08 | 4231.09 | | | | | | | | Parameter | | Results | | Method | Normal
Report
Limit | Units | Date
Analyzed | | | | Alkalinity
Moisture
pH | 36.
12.9
6.4 | NR
10.6
NR | 120.
14.7
7.4 | SM 403(M)
ASTM D2216
EPA 9045 | 50
5 .1
NA | mg/Kg CaCO3
% by wt
pH Units | 08/12/92
08/14/92
08/13/92 | | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis Not Requested ANALYST: Non Deaton 4231 Solid #### INORGANICS ANALYTICAL REPORT Client: Project: ES-Denver Newark AFB Work Order: Matrix: Client's ID: N1-A -8'-9' Sample Date: 07/30/92 % Moisture: Lab ID: 4231.10 | Parameter | Results | Method | Report
Limit | Units | Date
Analyzed | |------------|---------|-----------|-----------------|-------------|------------------| | Alkalinity | 330. | SM 403(M) | | mg/Kg CaCO3 | 08/12/92 | | Moisture | 14.0 | ASTM D221 | | % by wt | 08/14/92 | | pH | 7.8 | EPA 9045 | | pH Units | 08/13/92 | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis Not Requested ANALYST: Von Dleater ES-ENGINEERING-SCIENCE, INC. 600 Bancroft Way Berkeley, CA 94710 #### INORGANICS ANALYTICAL REPORT Client: Project: ES-Denver Newark AFB Work Order: Matrix: 4231 Solid Client's ID: Prep Blank Sample Date: % Moisture: Lab ID: Prep Blank Normal Parameter -----Results-----Method Report Units Date Limit Analyzed Alkalinity ND SM 403(M) 50 mg/Kg CaCO3 08/12/92 Moisture NA **ASTM D2216** . 1 % by wt 08/14/92 pН NA EPA 9045 NA pH Units 08/13/92 Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected ANALYST: Son Sleaton 08/13/92 #### INORGANIC QC SUNMARY - MS and MSD Work Order: 4231 % Moisture: HA Lab ID Spk/Dup: QC Batch: Alkalinity Moisture рĦ Blank Spk 4235.01 4231.03 452.17 451.44 453.22 7.78 Matrix: Solid 20 Units: mg/Kg CaCO3 (Alk) % by wt. (Mois) pH Units (pH) | No manada a | Date
Analyzed | Results
Unspiked | | RPD | RPD
QC | -Conc Adde | d- | Perc
Recov | | |------------------------|----------------------|------------------------|---------|-----|-------------|------------|--------|---------------|-----| | Parameter | MS/Dup | Sample MS/Sample | MSD/Dup | | Limit | MS | MSD | KS | NSD | | Alkalinity
Moisture | 08/12/92
08/14/92 | 0.00 23100.00
11.92 | | 0 | 20 2:
20 | 3650.00 23 | 650.00 | 98 | 98 | 7.77 * or N = Outside QC Limit: Don Sleator Date 8/19/92 REVIEWER: ANALYST: _ File: M1QCMSWM QC Limits for % Rec: 75 - 125 #### CASE NARRATIVE WORK ORDER NO. 4231 SOILS - EPA 6010 IRON The concentration of iron in sample E1V65 was greater than four times the spike added to the MS and MSD samples. The LCS and duplicate LCS results for iron were checked, and the laboratory was found to be in control. All iron results are therefore reported unqualified. Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference: | CLIENT ID | ABRIDGED ID | |-----------------|-------------| | N2-V-3'-4' | N2V34 | | N2-V-8'-9' | N2V89 | | N1-A-4'-4.5' | N1A445 | | N-BKG-4.5'-5.0' | NBKG4 | | N-BKG-8.5'-9' | NBKG859 | | N1-A-8'-9' | N1A89 | **METALS DATA PACKAGE** # Engineering Science - Berkeley Laboratory Inorganics Report | | | INORGANIC | ANALYSES DATA | SHE | ET | CLI | IENT SAM | PLE II | |--------------|-------------|---------------|--------------------|------------|--------|-----------|----------|------------| | ab Name: ES | BERKELEY I | | _ Contract: A | | | | N2V34 | | | | | | | | | | | [| | | | | 08S SAS No. | | | | | | | atrix (soil/ | | | | La | b Samp | le II | D: 4231. | ø3 <u></u> | | evel (low/me | d): LOW_ | | | Da | te Rec | eived | i: 08/11 | /92 | | Solids: | _85. | 0 | | | | | | | | Cor | ncentration | Units (ug/ | L or mg/kg as : | rec | eived) | : MG/ | ′KG | | | | CAS No. |
 Analyte |
 Concentration |
 C | Q | H | | | | | 7439-89-6 |
 Iron | 18000 | _ .
 _ | |
 P_ | <u> _</u> | | | | | | | | .
 . | | | | | | | | | | | | <u> </u> | _ | | | | | | | | _ . | | | | | | | 1 | | | - - | | | | | | | | <u> </u> | | _ : | _ - | | | | | | 1 | | | | - - | | <u> </u> | 1 | | | | | | | _ | | | mments: | | | | | | | | | | | | | | | | | | | #### Engineering Science - Berkeley Laboratory Inorganics Report | | | | , | | CITEUM CAMPIE T | |---------------|--------------|---------------|--|--|--| | | | INORGANIC | ANALYSES DATA | SHEET | CLIENT SAMPLE I | | ab Name: E_S_ | BERKELEY_L | ABORATORY_ | Contract: A | FCEE | N2V89 | | ab Code: ESBI | Ca | se No.: 42 | 08S SAS No. | : | SDG No.: E1V65_ | | atrix (soil/w | vater): SOIL | ' - - | | Lab Samp | le ID: 4231.04 | | evel (low/med | l): LOW_ | _ | | Date Rec | eived: 08/11/92 | | Solids: | _83. | 2 | | | | | Con | centration | Units (ug/ | L or mg/kg as | received) | : MG/KG | | | CAS No. |
 Analyte |
 Concentration | ici ō | м | | | 7439-89-6 | Iron | 14200 | - |
 P_ | | | | | | _
 _ | .[[
.[] | | | | | l | _
 _ | ! <u></u> | | | | | | ! _ | | | | | | | - |]_] | | | | | | _ | | | | | | | <u> </u> | | | | | | | | <u> </u> | | | | | | _ | _ | | | | | | _ | | | | | | | | | | • | | | | | | | | | | | | | | | 1 | ļ | | | <u> </u> | | | | | ************************************** | | | | | | | *** | · | | | mments: | | | | | | | | | | | | | #### Engineering Science - Berkeley Laboratory Inorganics Report | • | | INORGANIC | ANALYSES DATA | SHEET | | CLIENT SAMPLE ID | |---------------|-------------|---------------|--------------------|-------------|----------|------------------| | ab Name: E_S | BERKELEY_I | ABORATORY_ | _ Contract: A | FCEE | | N1A445 | | | | | | | | SDG No.: E1V65_ | | atrix (soil/v | | | | | | ID: 4231.05 | | evel (low/med | i): LOW_ | _ | | | | ved: 08/11/92 | | Solids: | _81. | 8 | | | | | | Con | ncentration | Units (ug/ | L or mg/kg as | recei | .ved): 1 | MG/KG | | ļ | CAS No. |
 Analyte |
 Concentration | | Q M | - | | | | .i | 16400 | 1 1 | i | _i | | , | | | | | | _ | | | | | | | _ | -
- | | 1 | | | | - - | _ | _{ | | | | | | - - | _ | _ | | | | | | | _ | _ | | | | | | |
 | _ | | | |
 | | - <i>-</i> | | _ | | | | | | - - | _ | - | | | |] | | - - | | - | | | | | | | | | | | | | | | | - | | 1 | | | | | | _
_ | | | | | | - - | | .
_ | | | | | | | | | | | | | <u></u> | . <u></u> | | | | mments: | | | | | | | | | | | | | | | #### Engineering Science - Berkeley Laboratory
Inorganics Report | I | | INORGANIC | ANALYSES DATA | SHEET | CLIENT SAMPLE II | |--------------|-------------|---------------|--------------------|------------|------------------| | ab Name: E_S | BERKELEY_I | ABORATORY | _ Contract: A | FCEE | NBKG4 | | | | | | | SDG No.: E1V65_ | | atrix (soil/ | | | | | ple ID: 4231.07 | | evel (low/me | | _ | | | ceived: 08/11/92 | | Solids: | _87. | | | Date Ne | ceived: 00/11/92 | | | | | | | | | Coi | ncentration | Units (ug/ | L or mg/kg as | received |): MG/KG | | ļ | CAS No. |
 Analyte |
 Concentration | Q |
 M | | | 7439-89-6 | Iron | 13000 | _
 _ | _
_ P_ | | | | | | - | _ _ | | | | 1 | | - | _ _ | | • | | | | - | _ _ | | | | | | _ | _ | | • | | | | | _ | | | | | | - | _!! | | | | | |
 | _
_ | | | | | | _ | _ | | • | | | | | _ | | | | | | | _ _ | | ·
• | | | | _ | | | | | | | | | | • | | | | | | | | <u> </u> | | | _ | _11 | | 1 | | | | | | | | | | | | **** | | . | | | ···· | | · | | mments: | | | | | | | | | | | | | GC VOLATILES DATA PACKAGE #### BTEX CASE NARRATIVE WORK ORDER NO. 4231 BTEX-EPA METHOD 8020 These seven soil samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Methods 8020. ESBL selected compounds and spiking amounts were used for the surrogates and matrix spike/spike duplicates. ESBL QC acceptance criteria were used for the surrogates. ESBL QC acceptance criteria were used for the matrix spike/spike duplicates. Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference: ABRIDGED ID # N2-V-4.3'-4.8' N2-V-9.0'-9.5' N1-A-4'-4.5' N2-C-10' N-BKG-4.5'-5.0 NBKG4 N-BKG-10 N1-A-8'-9' N2V4.3'-4.8' N2V9.0'-9.5' N2V9.0'-9.5' N2V9.0'-9.5' N1A4'-4.5' N2C10' NBKG4 NBKG10 N1-A-8'-9' CLIENT ID All samples were analyzed within EPA Data Validation Technical Holding Times. Two blanks were analyzed with these samples and met method acceptance criteria for surrogates and contamination. The continuing calibration checks used for quantifying these samples met method acceptance criteria. All surrogate recoveries were within ESBL acceptance criteria. Work Order NO.:4231 % Moisture:14 Client ID: N2V4.3'-4.8' Matrix:SOIL Laboratory ID:4231-01 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08-12-92 Date Confirmed:NA | == | Compound | Result | Reporting
Limit | | |----|-----------------|--------|--------------------|---| | | | | | | | | Benzene | ND | 1.0 | • | | | Ethyl Benzene | ND · | 2.0 | | | | Toluene | ND | 2.0 | | | | Xylenes (total) | ND | 2.0 | | | | | | | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: WWW Work Order NO.:4231 % Moisture: 26 Client ID: N2V9.0'-9.5' Matrix:SOIL Laboratory ID:4231-02 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed:08-12-92 Date Confirmed: NA | C | ompound | Result | Reporting
Limit | |---|----------------|--------|--------------------| | | | | | | В | enzene | ND | 1.0 | | E | thyl Benzene | ND | 2.0 | | T | oluene | ND | 2.0 | | x | ylenes (total) | ND | 2 0 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LA BTEX Aromatic Compounds By 8020 Work Order No.:4231 % Moisture:18 Client ID: N1A4'-4.5' Matrix:SOIL Laboratory ID: 4231-05 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08-11-92 Date Confirmed: NA | Compound | Result | Reporting
Limit | |-----------------|--------|--------------------| | | | | | Benzene | ND | 1.0 | | Ethyl Benzene | ND | 2.0 | | Toluene | ND | 2.0 | | Xylenes (total) | ND | 2.0 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR Work Order No.: 4231 % Moisture:21 Client ID: N2C10' Matrix:SOIL Laboratory ID: 4231-06 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed:08-12-92 Date Confirmed:NA | Compound | Result | Reporting
Limit | | |-----------------|--------|--------------------|--| | Benzene | ND . | 1.0 | | | Ethyl Benzene | ND | 2.0 | | | Toluene | ND | 2.0 | | | Xylenes (total) | ND | 2.0 | | ND-Not Detected NA-Not Applicable **D-Dilution Factor** ANALYST: LR Work Order No.:4231 % Moisture:13 Client ID: NBKG4 Matrix:SOIL Laboratory ID:4231-07 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08-11-92 Date Confirmed: NA | Compound | Result | Reporting
Limit | |-----------------|--------|--------------------| | Benzene | ND | 1.0 | | Ethyl Benzene | ND | 2.0 | | Toluene | ND | 2.0 | | Xylenes (total) | ND | 2.0 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LA Work Order NO.: 4231 % Moisture:11 Client ID: NBKG10 Matrix:SOIL Laboratory ID:4231-08 Level:LOW Unit:ug/KG Dilution Factor: 1 Date Analyzed:08-11-92 Date Confirmed:NA | == | Compound | Result | Reporting
Limit | | | | |----|-----------------|-------------|--------------------|--|--|--| | | | | | | | | | | Benzene | ND | 1.0 | | | | | | Ethyl Benzene | ND · | 2.0 | | | | | | Toluene | ND | 2.0 | | | | | | Xylenes (total) | ND | 2.0 | | | | | | • ,, | | 2.0 | | | | ND-Not Detected NA-Not Applicable **D-Dilution Factor** ANALYST: LR GROUP LEADER: Ruyal ## 9 ICP SERIAL DILUTION | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | ab | Name: E S BERKELEY | | LABORATORY | Cont | ract: AFCEE | E1V65 L | | | |----|--------------------|--|------------|--------------|-------------|-------------|------|--| | | Code: | | Case No.: | - | • | SDG No.: E1 | V65_ | | trix (soil/water): SOIL_ Level (low/med): LOW___ #### Concentration Units: ug/L | | 11 | 1 | Serial | <u> </u> | % | 1 | ī | |---------|----------------|----------|-----------|-----------|----------|------------|------------| | | Initial Sample | i | Dilution | i | Differ- | | ì | | Analyte | | ci | • | ci | ence | ĺQ | М | | | ! ! | _[| | | | _ | l | | Iron | 122559.70 | _! | 129770.28 | !_! | 5.9_ | !_ | P_ | | | | -! | | | | | ļ | | | / | -¦ | | 1-1 | ļ | - | ! | | | | -¦ | | 1-1 | | ¦- | | | | | _i | | i_i | | i- | i — | | | | _ | | 1_1 | | i_ | i 🔣 | | |] | _! | | 1_1 | <u> </u> | <u> </u> _ | <u> </u> | | | [[]. | -! | | !-! | | - | !— | | | | - |
 | | | - | | | | | -¦ | | ¦-¦ | | - | ¦ | | | | -i | | i – i | | i- | | | | | <u> </u> | | i_i | | i_ | <u> </u> | | | | _[| | 1_1 | | 1_ | l | | | | _! | | <u> _</u> | <u> </u> | !_ | ! | | | | -! | | !-! | ! | - | !— | | | | - | | <u> -</u> | | - | ¦ | | | | -¦ | | <u> </u> | | - | <u> —</u> | | | | _i | | | | 1 | | | | | _i | | ΙΞİ | | i_ | <u> </u> | | | | _1 | | 1_1 | | ĺ_ | | | | | _ | | 1_1 | 11 | 1_ | | #### 13 PREPARATION LOG | ab | Name: | E S | BERKELE | Y LABO | DRATORY | |----|-------|-----|---------|--------|---------| | | | | | | | Contract: AFCEE____ b Code: ESBL__ Case No.:_4208S_ SAS No.: ____ SDG No.:E1V65_ thod: P_ | I DDA | | ···· | | |-------------|---------------------------------------|---------------|--------| | EPA |
 Dwa w = + - a w | Total and and | | | Sample | Preparation | _ | Volume | | No. | Date | (gram) | (mL) | |
 01MPA7 | 08/17/92 | 1 00 | 100 | | 01MPB7 | _08/17/92
 08/17/92 | | | | 01SB17 | · · | 1.05 | | | - | | | 100 | | 01VW14 | ! | 1.00 | 100 | | E1V65 | _08/17/92 | 1.05 | 100 | | E1V65_S1_ | _08/17/92 | 1.00 | 100 | | E1V65_S2_ | _08/17/92 | 1.05[| 100 | | E1V7 | _08/17/92 | 1.02 | 100 | | E1V75 | _08/17/92 | 1.03 | 100 | | rcss | | 1.00 | 100 | | LCSSD | _08/17/92 | | 100 | | | _08/17/92 | | 100 | | N1A89 | _08/17/92 | 1.05 | 100 | | N2V34 | _08/17/92 | 1.00 | 100 | | N2V89 | _08/17/92 | 1.04 | 100 | | NBKG4 | _08/17/92 | 1.05 | 100 | | NBKG859 | _08/17/92 | 1.04 | 100 | | PREPBLANK | _08/17/92 | 1.00 | 100 | | l | | | | | l | | | | | | | | | | 1 | | | | | | | | | | | | | j | | 1 | · · · · · · · · · · · · · · · · · · · | | i | | i | | | i | | | | | | | | | | | | | | | i | | | | | | | | | | | | 1 | | | | FORM XIII - IN ILMO2.1 U.S. EPA - CLP #### 14 ANALYSIS RUN LOG Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____ ab Code: ESBL__ Case No.: 4208S_ SAS No.: ____ SDG No.:E1V65_ Enstrument ID Number: TJA 61 M_ Method: P_ Rart Date: 08/17/92 End Date: 08/17/92 | | | | ļ | | | | | | | | | | | A | na: | lyi | tes | 5 | | | | | | | | | | |-----------|------|------|---------|-------------|----------|------------|------------|----------|-----|----------------|------------|------------|------------|-------------|------------|-------------|-----|------------|--------------|------------|------------|------------|------------|--------------|------------|------------|-------------| | EPA | 5.5 | | | _ | !_ | Sample | D/F | Time | 8 | R | F | | ! | | ļ. | ļ. | ļ | ļ | ļ | ļ | l | | | l | l | l | | | | 1 | | ١. | 1 1 | | No. | | | | | E | | | ! | | | ļ | | ļ | | ļ | | | | ! | ļ | ! | ! | ! | ļ | ! | | | | STD1 | 1.00 | 1523 | <u></u> | | <u>_</u> | ¦ — | | ¦- | ¦- | ¦- | - | - | - | <u> </u> | ļ — | _ | - | _ | _ | <u> </u> _ | ļ — | - | <u> </u> | !— | _ | <u> </u> _ | <u> </u> | | TD2 | | 1528 | | | X | • | - | ¦- | ¦ — | ¦- | ¦ — | i — | ¦ — | ¦- | ¦ — | | | ¦ — | | ¦ — | - | <u> </u> _ | ¦ — | <u> </u> – | ¦ — | - | !! - | | TD3 | | 1532 | | | X | | | i – | i- | i- | ; — | <u>'</u> — | ¦ — | - | ¦ — | | - | - | - | !- | ! — | !- | !- | !- | !- | _ | — · | | STD4 | | 1537 | | | X | - | ¦ — | - | i – | ¦- | <u> </u> | ¦ — | <u> </u> – | - | | | - | - | - | — | !- | - | ¦- | | [- | - | ¦-¦. | | cv | 1.00 | | | | X | _ | ; — | i – | i | i – | i — ' | ¦ — | - | <u> </u> | - | - | - | - | ¦ — | ¦ — | !- | !- | ¦ — | ¦- | ! — | | - : | | CB | 1.00 | | | | X | _ | i – | i | i | i | _ | i – | i – | i — | - | - | - | _ | | ¦ — | ¦ — | [- | ¦- | ¦ — | — | - | - | | ICSA | 1.00 | 1551 | | | X | i — | i — | i – | i — | i – | i — | i — | - | i – | - | - <u> </u> | | - | — | - | !- | ¦ — | ¦- | ¦- | ; — | <u> </u> _ | | | CSAB | 1.00 | | | | X | | i | i — | i – | i | i – | i — | i | _ | - | | | - | ¦ — | - | - | - | - | <u> </u> – | - | - | - - | | RI | 1.00 | 1600 | | | i | i | i — | i – | i — |
i – | | i — | i — | _ | i — | - | | _ | - | i – | - | i- | !- | | — | - | -:- | | PREP BLK | 1.00 | 1605 | | | X | | i — | i — | - | i [—] | | i — | _ | - | | i – i | - | _ | - | _ | - | <u> </u> – | i — | - | ¦ — | - | - - | | ZZZZZZ | 1.00 | 1609 | | | | | | i — | i – | i – | | | - | - | | - | | - | - | i — | - | ; — | ¦ — | - | ¦ — | - | -:- | | CSS | | 1614 | | | X | | | i — | i – | i — | - | | _ | | _ | | _; | - | _ | - | | - | <u> </u> | i — | - | - | -¦- | | CSSD | 1.00 | | | | X | i | | i — | - | i — | _ | _ | | - | - i | -i | -; | _ | - | - | | - | <u>'</u> | | _ | | -¦- | | E1V65 | 1.00 | 1623 | | | X | | | <u> </u> | - | i — | | _ | | | ı-i | -i | _i | _ | | _ | | - | - | - 1 | — | | -¦- | | 1V65_S1 | 1.00 | 1628 | | | X | | _ | _ | - | | i | _ | - | | | -i | _; | _ | _ | _ | - | i – | - | - | | - | -;- | | 1V65_S2 | 1.00 | 1632 | | | X | | | i — | i | | i | | | | _ i | -i | -i | | - | _ | | _ | _ | | _ | | -¦- | | ccv | 1.00 | 1637 | | | X | i | | | | i — | | | _ | | i | -i | _; | _ | | _ | - | _ | - | | _ | - | -¦- | | CB | 1.00 | 1642 | | | X | | | | | i | | ı —i | i | | -i | -i | -i | _ | | _ | - | - | _ | - | - | - | - - | | 1V65L _ | 1.00 | 1646 | | | X | | _ | | | | -i | -i | | i | -i | | _i | -i | _ | _ | <u>'</u> | - | - | | - | - | -1- | | E1V7 | 1.00 | 1651 | | | X | | | | Ī | i Ti | -i | -i | | | -i | -i | -i | _i | _i | _ | | _ | | | _ | - | -1- | | <u> </u> | 1.00 | 1655 | | | X | \equiv i | \equiv i | | | | _i | i | T | -i | -i | -i | i | -i | -i | _ | -i | | - | - | - | _; | -;- | | 2V34 | | 1700 | | | X | | | | | | \equiv i | \equiv i | | \Box i | \equiv i | Ξi | _i | _i | | | -i | i — i | - | - | | - | -i- | | 2V89 | 1.00 | 1705 | | | X | | _ | | | | | | _i | | $\equiv i$ | Ξi | _i | \equiv i | _i | | _i | i – i | | ; | | _i | _;- | | N1A445 _ | 1.00 | • | | | X | | | _i | _i | | | | =i | \equiv i | | =i | Ξi | _i | \equiv i | | -i | i | -i | -i | | - | -i- | | BKG4 | 1.00 | | | | X | _ | _1 | | | _ | | \equiv i | \equiv i | \equiv i | $\equiv i$ | Ξi | Ξi | =i | \equiv i | _i | -i | -i | i | i | | -i | _i- | | BKG859_ _ | 1.00 | | | | X | _1 | _ | _1 | | _1 | _ | | | | | $\exists i$ | | =i | \equiv i | \equiv i | | - i | Ī | | -i | -i | _i- | | N1A89 _ | 1.00 | | | | X | _1 | _1 | _1 | | | _1 | | | \exists i | _1 | =i | _i | _i | i | -i | _i | i | -i | -i | -i | -i | _i_ | | | 1.00 | | | | X | _ | _1 | _i | | | | _i | | =i | | _i | _i | _i | | _i | | _ i | _ i | _i | | _i | _i- | | CB _ | 1.00 | | | | X | _ | _ | _ | | _ | _1 | _ | _i | _ | _i | Ī. | _i | =i | _i | _i | _i | i | i | _i | i | _i | _i- | | 71VW14 _ | 1.00 | | | | X | _1 | _ | _ | _ | | _1 | _ | _i | _i | | Ξi | _j | \equiv i | _i | \equiv i | _i | i | | _i | -i | -i | -i- | | 1MPA7 | 1.00 | | | | X | _1 | _ | | | | | i | | | _i | _i | _i | _i | \equiv i | _i | \equiv i | \equiv i | \equiv i | _i | \equiv i | _i | _i- | | 1MPB7 _ | 1.00 | 1746 | | ! | X | _ | _1 | | _1 | _ | | _[| _ | _[| | _1 | ΞĹ | ΞÌ | _i | \equiv i | -i | _ | -i | _i | _i | -i | -i- | #### 14 ANALYSIS RUN LOG | h | Mame. | r c | סק זקעמקמ | LABORATORY | |---|-------|-----|-----------|------------| | w | name: | ല_ഠ | _DDKVUTTI | LABURATURY | Contract: AFCEE____ Code: ESBL__ Case No.: 4208S_ SAS No.: ____ SDG No.:E1V65_ nstrument ID Number: TJA 61 M_ Method: P_ tart Date: 08/17/92 End Date: 08/17/92 | EPA | | | | | | | | | | | | | | Aı | na: | Lyt | tes | 3 | | | | | | | | | | |-------------------------|--------------|------------------------------------|---|---|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-------------------------|---------------|---------------------|---------------------|----------------|---------------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------------|---------------------|-------------------| | Sample
No. | D/F | Time | % | R | F | | |
 | | | | |

 | | | | | | | | | | | | | | | | 1SB17
 SA
 CSAB | 1.00 | 1751
 1755
 1755
 1800 | | | X | _ | -
 -
 -
 - | | —
 —
 — | _
 _
 _ | _ | _ | _
 _
 _
 |

 | | | |

 | _ | _ | | _
_
_ | :
 !
 ! |
 -
 - |
 | | | | RI | 1.00
1.00 | 1805
 1809
 1814 | | | X | _
 _
 _ |
 -
 - |
 -
 - | _
 _
 _ | | _ | _ | _ | | _ | _
 _
 _
 - | _ | _
_
_ | _ | _ | | | _ | _ | _ | _
 _
 _ | | | | | | | | | _
 _
 _ | | _
 _
 _ | _
 _
 _ | | | _ | | | | | _
_
_ | _ | _ | |

 | |

 | | _
 _
 _ | _ | _
_
_ | | | |

 | | | _
 _ |
 | _
 _
 _ |
 -
 - | | |

 | _ | _ | _
 _
 _ | | | _
_
_ | | | _ | | _ | _ | _ | _ | _ | | | | | | | | | | | | | _ | _

 -

 - | _ |

 | _
 _
 _ | | _ | _ | _ | _
_
_ | | _
_
_ | _
_
_ |

 | _
_
_ | _
_
_
_ | | | | | | | | | _
 _
 _ | _ | |
 -
 - | _
 _
 - | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _ | _
_
_ | _
_
_ | _
_
_ | | _ | | | _ | | | _
_
_ | | _ . | | <i>y</i> | | | | |

 | _ | _
 _
 _ | _ | | | _
_
_ | | | _ | _ | _ | _
_
_ | _
_
_ | _¦
_
_ | _
_
_ | _ | -
-
- | _
_
_ | | | _ | _ -
 -
 - | | | | | | | _
 _
 _ | _ | | _ | | _ | _ | _ | _
_
_ | _
_
_ | _
_
_! | _
_
_ | _
_
_! | _
_
_! | _
_
_! | _
_
_! | _
_
_ | | _
_
_ | | _
_
_ | _
_
_ | | | | | | *************************************** | | | _
_
_ | _
 _
 _ | _ | _
_
_
- | _
_
_ | _
_
_ | _ | _ -
_ -
_ - | | | | | | | _ | | _
_ | _ | | | | _¦
_
_ | | | | | _
_
_ | _¦
_¦ | _
_ | _
_
_ | _
_
_ | | | _
_ | _
_ | | _ -
 -
 - | | ١ | <u>Q</u> | ۷ | |---|------------------------|---| | | d | 3 | | 1 | Ė | | | • | $\stackrel{"}{\simeq}$ | 3 | | [| | _ | **CHAIN OF CUSTODY RECORD** 100 Form No. Remarks Received by: Received by: (Signature) (Signature) Containers ło Namber Remarks SEND RESULTS TO: BRAS BEASS 209 405 30185 Bares BOARS 502 BRB 208 1602 802. 1605 20.25 209 Container No. 82 Date/Time Date/Time JEFF KITTEL BATTEUE SOS KING AUE SAMPLE TYPE (V) Relinquished by: (Signature) Relinquished by: (Signature) 以め Date/Time Ships × XZLQ Received for Laboratory by: Received by: (Signature) (Signature) 1-816-8,5-91 N-BKG-45.5.0 7-4.5-5 8,57-9 N-BKG-4,5-5,0 N2-V-4,3/-4.8 Received by: NI-A-4-45 N2-V-9.5 (Signature) 54-14-16-18-ノケーンと SAMPLE I.D. N3- V-3-41 16 -8-11-BKG-10 HEAD INGTON **Vター Cー/o**/ N-BKG -N-BKG 700 N2-11-NEWAK AFB Date/Time Date/Time Date/Time /コート/ NA-L 10AU692 Project Title GREGORY TIME Relinquished by: (Signatura) Relinquished by: (Signature) Relindshight by: (Signasure) SAMPLERS: (Signature) Columbus Laboratories gon CASTEP 64468-0630 3150192 28 30192 2850292 31 34 92 31502 92 01 AUS 92 28 50192 31 502 92 3130192 28 JUL 92 31 JUL 92 30JUL 92 30542 92 28 JUL92 30JUL 92 2850192 DATE Proj. No. (BLLMBUS, 04 43201 Page ___ **CHAIN OF CUSTODY RECORD** Form No. 002 Remarks Received by: Received by: (Signature) (Signature) Containers 10 ło Миmber RAK 1209 1602 Container No. Results Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) 505 Date/Time 16/11 Received for Laboratory by: Received by: (Signature) Received by: JON EASTEP (Signature) SAMPLE I.D. -A-8-4-1-4-8-di 16-8-H-10 AUG 92 1700 Date/Time Date/Time NEWARK Date/Time Project Title TIME Mand- Huch to Relinquished by: (Signafure) Relinquished by: (Signature) Relinquished by: (Signature) SAMPLERS: (Signature) Columbus Laboratories 6448-6630 30 JUL92 30 50292 30 JUL 92 DATE ares Proj. No. TOTAL KJELDAHL NITROGEN TOTAL PHOSPHATE SOIL CLASSIFICATION DATA PACKAGE Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript: W.O. #4231 Soil Total Phosphorous Analysis for: Total Pho First Sample #: 208-3076 Sampled: 7/28-31/92 Received: Analyzed: Aug 14, 1992 Sep 11, 1992 Reported: Sep 15, 1992 #### LABORATORY ANALYSIS FOR: #### **Total Phosphorous** | Sample
Number | Sample
Description | Detection Limit
mg/kg | Sample
Result
mg/kg | |------------------|-----------------------|--------------------------|---------------------------| | 208-3076 | N2-V-3'-4' | 10 | 540 | | 208-3077 | N2-V-8'-9' | 10 | 540 | | 208-3078 | N1-A-4'-4.5' | 10 | 570 | | 208-3079 | N-BKG-4.5'-5.0' | 10 | 480 | | 208-3080 | N-BKG-8.5'-9' | 10 | 470 | | 208-3081 | N1-A-8'-9' | 10 | 460 | | - | Method Blank | 10 | N.D. | THIS REPORT HAS BEEN APPROVED AND REVIEWED BY ESBL PROJECT MANAGE DATE Analytes reported as N.D. were not present above the stated limit of detection. **SEQUOIA ANALYTICAL** Please Note: Analysis results reported on a dry-weight basis. Tod Granicher Project Manager 1001l Engineering Science, Inc. 600 Bancroft Way Attention: Tom Paulson Client Project ID: W.O. #4231 Sampled: Received: 7/28-31/92 Berkeley, CA 94710 Sample Descript: Analysis for: Soil Total Kjeldahl Nitrogen Analyzed: Aug 14, 1992 Aug 25, 1992 First Sample #: 208-3076 Reported: Sep 15, 1992 #### LABORATORY ANALYSIS FOR: #### Total Kjeldahl Nitrogen | Sample
Number | Sample
Description | Detection Limit
mg/kg | Sample
Result
mg/kg | |------------------|-----------------------|--------------------------|---------------------------| | 208-3076 | N2-V-3'-4' | 10 | 450 | | 208-3077 | N2-V-8'-9' | 10 | 270 | | 208-3078 | N1-A-4'-4.5' | 10 | 300 | | 208-3079 | N-BKG-4.5'-5.0' | 10 | 730 |
 208-3080 | N-BKG-8.5'-9' | 10 | 300 | | 208-3081 | N1-A-8'-9' | 10 | 400 | | • | Method Blank | 0.10 | N.D. | Analytes reported as N.D. were not present above the stated limit of detection. SEQUOIA ANALYTICAL 20EN Tod Granicher Project Manager Please Note: Analysis results reported on a dry-weight basis. 2083076.ENG <8> 600 Bancroft Way Client Project ID: W.O. #4231 Berkeley, CA 94710 Attention: Tom Paulson QC Sample Group: 2083076-81 Reported: Sep 15, 1992 #### **QUALITY CONTROL DATA REPORT** | ANALYTE | Total Kjeldahl | Total | | | |---------------------------|----------------|---------------|--|--| | ONAL! IL | Nitrogen | Phosphorous | | | | | Milogen | Filospilolous | | | | | | | | | | Method: | EPA351.4 | EPA365.3 | | | | Analyst: | G. Kern | K. Follett | | | | Reporting Units: | mg/L | mg/kg | | | | Date Analyzed: | Aug 25, 1992 | Apr 11, 1992 | | | | QC Sample #: | 208-3154 | 208-3081 | | | | | | | | | | Sample Conc.: | 640 | 350 | | | | Cample Collo | 040 | 330 | | | | | | | | | | Spike Conc. | | | | | | Added: | 4000 | 100 | | | | | | | | | | Como Moteiro | | | | | | Conc. Matrix
Spike: | 4400 | 400 | | | | Spike. | 4400 | 460 | | | | | | | | | | Matrix Spike | | | | | | % Recovery: | 94 | 110 | | | | • | • | | | | | _ | | | | | | Conc. Matrix | | | | | | Spike Dup.: | 4400 | 450 | | | | Matrix Calka | | | | | | Matrix Spike
Duplicate | | | | | | % Recovery: | 94 | 100 | | | | 75 HOUSTON. | 37 | 100 | | | | | | | | | | Relative | | | | | | % Difference: | 0.0 | 2.2 | | | | | | | | | **SEQUOIA ANALYTICAL** Tod Granicher Project Manager % Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added X 100 x 100 Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2 X 100 2083076.ENG <9> 600 Bancroft Way Berkeley, CA 94710 Client Project ID: W.O. #4231 Sampled: Jul 31, 1992 Sample Descript: Soil, N2-V-3'-4' Method of Analysis: ASTM D422-63 Received: Analyzed: Aug 14, 1992 Aug 26, 1992 Attention: Tom Paulson Lab Number: 208-3076 Reported: Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 218.19g 43.98g 79.84% SIEVE TEST FOR **WEIGHT RETAINED** IN NO. 10 SIEVE IDEAL PAN = 0.0 IDEAL TOTAL = (B) | SIEV | E SIZE | WEIGHT
RETAINED, g | % RETAINED | CUMULATIVE
% RETAINED | CUMULATIVE
% PASSING | |------|----------|-----------------------|------------|--------------------------|-------------------------| | 11 | ½in | 0.0 | 0.0 | 0.0 | 100 | | 3/ | /8in | 5.98 | 2.7 | 2.7 | 97.3 | | 1 | 0.4 | 14.59 | 6.7 | 9.4 | 90.6 | | No | 5.10 | 23.31 | 10.7 | 20.0 | 80.0 | | | <u> </u> | | | | | | | AN | 0.0 | | | | TOTAL 43.98 #### HYDROMETER TEST | ELAPSED T | IME TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |-----------|-----------|-------------|-------------|------|-----------| | (T) | •€ | READING (H) | READING (R) | (L) | DIAM. (S) | | 2 | 22 | 39 | 35 | 10.6 | 0.031 | | 5 | 22 | 35 | 31 | 11.2 | 0.020 | | .10 | 22 | 31 | 27 | 11.9 | 0.015 | | 15 | 22 | 29 | 25 | 12.2 | 0.012 | | 25 | 22 | 27 | 23 | 12.5 | 0.0094 | | 40 | 22 | 25 | 21 | 12.9 | 0.0076 | | 60 | 22 | 23 | 19 | 13.2 | 0.0062 | | 90 | 22 | 22 | 18 | 13.3 | 0.0051 | | 120 | 22 | 21 | 17 | 13.5 | 0.0045 | | 1440 | 22 | 12 | 8 | 15.0 | 0.0014 | | % SUSPENDED | |-------------| | (P) | | 44 | | 39 | | 34 | | 31 | | 29 | | 26 | | 24 | | 23 | | 21 | | 10 | WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): MENISCUS CORRECTION FACTOR (F): TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): FORMULAS: 65g 0.975 2.65 3 0.01332 R = H - E - F S = K[SQRT(L/T)] P = (R/W) 100 $W = (J \cdot 100) / C$ $J = D \cdot G$ SEQUOIA ANALYTICAL Tod Granicher **Project Manager** 2083076.ENG <1> # Inorganics Report CLIENT SAMPLE ID INORGANIC ANALYSES DATA SHEET NBKG859 Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____ theb Code: ESBL___ Case No.: 4208S SAS No.: ____ SDG No.: E1V65_ atrix (soil/water): SOIL_ Lab Sample ID: 4231.09____ Level (low/med): LOW___ Date Received: 08/11/92 Solids: _85.3 Concentration Units (ug/L or mg/kg as received): MG/KG CAS No. | Analyte |Concentration|C| M I 7439-89-6 |Iron____|___15700|_| mments: FORM I - IN | | | INORGANIC | ANALYSES DATA | SHEET | ŗ | CLIENT SAMPLE II | |-------------|---------------|------------|---|--|---------|------------------| | ab Name: E_ | SBERKELEY I | ABORATORY | _ Contract: A | FCEE | | N1A89 | | | | | | | | SDG No.: E1V65_ | | | | | oob bab No. | | | | | | /water): SOII | | | | | ID: 4231.10 | | | ed): LOW_ | | | Date | Recei | ved: 08/11/92 | | Solids: | _86. | 0 | | | | | | Co | oncentration | Units (ug/ | L or mg/kg as | recei | ved): | MG/KG | | | CAS No. | Analyte |
 Concentration |
 C | Q M | _
 | | | 7439-89-6 | Iron | 14400 | _ _
 _ _ |
 P | !
! | | | | | - | <u> </u> | _ | - | | | | | | - - | _ | _ | | | | | | <u> </u> | | _
_ | | | | | | - - | _ | _ | | | 1 | | | | | _[| | | | | | <u> </u> | | - <u> </u> | | | | | | | | _ | | | | | | - - | _ | _ | | | | | | | | _ | | | | | | _ _ | _ | _
_ | | | | | | - | _ | _ | | | | | | | _ | _ | | | | <u> </u> | | | | _
_ | | | | | | - | _ | _ | | | | | | | | _' | | | | | *************************************** | | | | | | | | | | | | | mments: | | | | | | | | | | | | | | | FORM I - IN # Inorganics Report CLIENT SAMPLE ID INORGANIC ANALYSES DATA SHEET PREP BLANK Lab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE_____ b Code: ESBL__ Case No.: 4208S SAS No.: ____ SDG No.: E1V65_ atrix (soil/water): SOIL_ Lab Sample ID: PREP BLANK 是vel (low/med): LOW___ Date Received: 08/17/92 Solids: 100.0 Concentration Units (ug/L or mg/kg as received): MG/KG CAS No. | Analyte | Concentration | C | Q M 7439-89-6 | Iron____ 4.5 U | P_| mments: FORM I - IN | | | | | | Ind | organi | cs Re | port | | | CLTE | NT S | AMPLE | Tr | |----|-------|--------|----------|--------|--------|---------|-------|-------|--------|---|------|------|-------|----| | | | | | | SPII | KE SAMI | PLE R | ECOVE | RY | ļ | | | | _ | | ab | Nameı | E_SBER | RKELEY_I | LABORA | ATORY. | - | Cont | ract: | AFCEE_ | | | FIVO | 5 S1 | | | ab | Code: | ESBL | | Case | No.: | 42085 | | SAS N | o.: | | SDG | No.: | E1V6 | 5_ | Level (low/med): LOW___ Solids for Sample: _79.0 trix (soil/water): SOIL___ Concentration Units (ug/L or mg/kg dry weight):MG/KG | |] | | |] | | | | 1 | 1 | |---------|-------------------------------|--|------------|-----------------------|---------|---------------------|-------------|------------|---| | Analyte | Control
 Limit
 %R | Spiked Sample
Result (SSR) | С | Sample
Result (SR) | C | Spike
Added (SA) | %R | Q | i
I
I M | | ron | | 18990.9741_ | <u> </u> | 14775.1296 | _ | 120.55 | _3497.2 | -
 - |
 P_ | | | . | | _ | | _ | | | _ | <u> </u> | | | | |
 | | | | | ¦- |
 | | | | | <u> </u> | | _ | | | <u> </u> | i_ | | | . | | <u> </u> _ | | _ | | | <u> </u> _ | ! — | | | . | | _ | | _ | | | <u> </u> | ļ | | | · | | - | | - | | | - | !— | | | . | | i_ | | _ | | | i_ | i | | | .][| | _ | | _ | | | _ | <u> </u> | | | . [| | <u> </u> _ | | - | | | - | <u> </u> | | | | | <u> </u> | | _ | | | - | ¦ — | | | .[[| | _ | | _[| | | j_ | I = | | | . | | _ | | _ | | | ļ_ | ļ — | | | . [[| |
 | | - | | | - | ¦ | | | | | <u> </u> | | _ | | | i_ | <u> </u> | | | .!! | | <u> </u> _ | | _! | | | <u> </u> _ | !— | | | | ATTENDED TO THE STATE OF ST | _ | | | | | - | <u> </u> | | | | | <u> </u> | ! (| -1 | | | —
 | — | | | ii | | | | _
_ | | | <u> </u> | <u> </u> | | | 1 | | _ | | _[| | | | l | | n | ments: | | | | | | |---|--------|--|--|------|--|--| | È | | | | | | | | | | | |

 | | | | | SPIKE SAMPLE | RECOVERY | CLIENT SAMPLE II | |--------------------|--------------------|----------------|-------------------| | • | | | E1V65 S2 | | ab Name: E_S_BERKE | LEY_LABORATORY_ Co | ontract: AFCEE | | | ab Code: ESBL | Case No.: 4208S | SAS No.: | SDG No.: E1V65_ | | trix (soil/water): | soir | Leve | el (low/med): LOW | | Solids for Sample: | _79.0 | | | Concentration Units (ug/L or mg/kg dry weight):MG/KG | <u> </u> | | | 1 | 1 | 1 | 1 | i | |----------|-------------------------------|---------------|----------------------------------|-----------------------|--------------|-------------|--------| | Analyte | Control
 Limit
 %R | Spiked Sample |
 Sample
: Result (SR) C | Spike
 Added (SA) |
 |

 Q | М
М | | | . | | | | lI | -1 | | | ron | . [] | 17178.8038_ | 14775.1296 _ | 126.58 | _1898.9
 | - | P_ | | | . [] | | - | 1 | | - | | | | | | | | | | | | | .] | | _ _ | | | - | | | | | | - | | | - | | | | ii | | | | | _i | | | | .[| | _ | | | - | | | | . [| | - | . |
 | - | | | | · | | | | | | | | | .!! | | | | | _! | | | ! | | | - | . | | - | | | | | | | | | | | | | . | | | | | _! | | | | | | _ | . | | - | _ | | | | | | | | | _ | | | | | | | | | | | | . | | - | | | -! | | | 1 | .!! | | _ | | | - | - | | 4 | ii | | <u> </u> | | | -i | | | m | ments: | |----|--------| | 4 | | | ď. | | | _ | | FORM V (Part 1) - IN MATRIX SPIKE DUPLICATE | CLIENT | SAMI | ظيلا | ID | |----------|------|------|-----------| |
 E: | 1V65 | SD |

 | ab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____| Case No.: 4208S SAS No.: _____ SDG No.: E1V65_ trix (soil/water): SOIL_ Level (low/med): _LOW___ Solids for Sample: _79.0 % Solids for Duplicate: _77.6 #### Concentration Units (ug/L or mg/kg dry weight):MG/KG |

 Analyte | Control
 Limit | Sample Spike (S) C | Sample Spike Duplicate (D) C | | |-------------------|----------------------|------------------------|--------------------------------|------------| | Iron | | 18990.9741 | 17178.8038 _ | 10.0_ _P_ | | | | _ | | | | | | | | - | _ _
 _ _ | | | | | | | | | | 1 | | _ | _
 _ | | | BLANK SPIKE DUPLICATE | | LCSSD | | |-------|-------|---| |
ł | | İ | CLIENT SAMPLE ID De Code: ESBL___ Case No.: 4208S SAS No.: ____ SDG No.: E1V65_ trix (soil/water): SOIL_ Level (low/med): _LOW__ Solids for Sample: 100.0 % Solids for Duplicate: 100.0 Concentration Units (ug/L or mg/kg as received):MG/KG | | 1 | 1 | i | | 11 | | 1 | ı | |--|---------|-----------|--|-----------------|-----------|-----|----------|------------| | | Control | , | i | Blank Spike | ii | | | ĺ | | Analyte | Limit | Spike (S) | C | Duplicate (D) C | : | RPD | Q | ı | | Iron | | 81.5360 | | 84.1480 | -
- | 3.2 | _ |
 P | | | . | | 1_ | | Ϊİ | | i_ | i_ | | ······································ | | | <u> </u> | | - | | _ | <u> </u> | | | .! | l | !-! | | - | | - | ! — | | | | | - | | -
 | | - |
 | | | | | i_i | | _i i | | <u> </u> | <u> </u> | | | . | | <u> _</u> | | - | | _ | <u> </u> | | | | l | - | | - | | - | <u> </u> _ | | | | | - | _ | .
 | | <u> </u> | | | | | | | | | | - | i – | | | | | | | | | | <u> </u> | | | . | | <u> </u> | | . | | - | ļ | | | . | | - | _ | - | l | - |
 | | | | | | | | | | !
 | | | | | 1_1 | | Ϊİ | i | i_i | i _ | | ····· | | | _ | | .]] | ! | - | | | | .! | | - | | . | | - | _ | | | | | | | 11 | | | - | | | | | | | ji | | <u> </u> | | | | | | _! | | IJ | | _ | | | | .! | l | | l | .11 | 1 | 1_ | | #### BLANK SPIKE SAMPLE | b Name: | E_SBERKE | ELEY_LABORATORY_ | Contract: | AFCEE | | | |-----------|------------|------------------|---------------|-------|------|--------| | ab Code: | ESBL | Case No.: 4208 | SS SAS No.: _ | SDG | No.: | E1V65_ | | lid Lcs | Source: | ESBL-LCSS | | | | | | queous L(| CS Source: | | | | | | | halyte | | eous (ug/I
Found |

 True | Solid (1 | ng/kg)
Limits | %R | |----------|------------|---------------------|--------------------|----------|------------------|---------| | Lron | | |
 100.0
 | 81.5 _ _ | 80.0 120. | 0 _81.5 | | | .
. | | . | j | _ |
 .
 . | | | | | 4 |
 | | | | | | #### BLANK SPIKE SAMPLE | þ | Name: | E_S_BERKE | ELEY_LABORATORY_ | Contract: AFCEE | | |-------------|--------|------------|------------------|-----------------|-----------------| | ab | Code: | ESBL | Case No.: 4208S | SAS No.: | SDG No.: E1V65_ | | 3 1: | d LCS | Source: | ESBL-LCSS | | | | ue | ous Lo | CS Source: | | | | | 1 | Aque | ous (ug/I | | M | Soli | d (m | g/kg) | | | |----------|-------|-----------|----|-------|-------|------|-------|-------|-------| | halyte | True | rouna | %R | True | round | C | Lim | its | &R | | ron | [| [| | 100.0 | 84.1 | - | 80.0 | 120.0 | _84.1 | |) | | | | | | | | | | | | - | ! | | | | _ | | | | | | - | | | | f | - |
 | | | | | ii | | | | | | | | | | | _ | | | | | _ | | | | | <u> </u> | - | | | | | -! | [| | | | | ii | | | | | =i | | | | | | _ | | | | | - | | | | | | . | | | | | - | | | - | | | | | | | | | | | | | <u> </u> | _ | | | | | _ | | | | | | - | | |
 | | - | | | | | | | | | | | | | | | | | _ [[| | | | | _ | -[[| | | | | _! | ! | | | 600 Bancroft Way Berkeley, CA 94710 Client Project ID: Sample Descript: W.O. #4231 Soil, N2-V-8'-9' Sampled: Received: Jul 31, 1992 Aug 14, 1992 Attention: Tom Paulson Lab Number: Method of Analysis: ASTM D422-63 208-3077 Analyzed: Reported: Aug 26, 1992 Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 198.66g 21.23g 89.31% TOTAL SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE | SIEVE SIZE | WEIGHT
RETAINED, g | % RETAINED | CUMULATIVE
% RETAINED | CUMULATIVE
% PASSING | |------------|-----------------------|------------|--------------------------|-------------------------| | 1½in | 0.0 | 0.0 | 0.0 | 100 | | 3/8in | 0.0 | 0.0 | 0.0 | 100 | | No.4 | 2.57 | 1.3 | 1.3 | 98.7 | | No.10 | 18.66 | 9.4 | 10.7 | 89.3 | | | | | | | | PAN | 0.0 | | <u> </u> | | IDEAL PAN = 0.0 IDEALTOTAL = (B) #### YDROMETER TEST | ELAPSED TIME | TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |--------------|-------|-------------|-------------|------|-----------| | (T) | ℃ | READING (H) | READING (R) | (L) | DIAM. (S) | | 2 | 22 | 40 | 36 | 10.4 | 0.030 | | 5 | 22 | 34 | 30 | 11.4 | 0.020 | | 10 | 22 | 30 | 26 | 12.0 | 0.015 | | 15 | 22 | 27 | 23 | 12.5 | 0.012 | | 25 | 22 | 26 | 22 | 12.7 | 0.0095 | | 40 | 22 | 24 | 20 | 13.0 | 0.0076 | | 60 | 22 | 23 | 19 | 13.2 | 0.0062 | | 90 | 22 | 21 | 17 | 13.5 | 0.0052 | | 120 | 22 | 21 | 17 | 13.5 | 0.0045 | | 1440 | 22 | 12 | 8 | 15.0 | 0.0014 | WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): **MENISCUS CORRECTION FACTOR (F):** TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): | | 65g | |---|---------| | Γ | 0.975 | | Γ | 2.65 | | | 3 | | Ε | 1 | | Γ | 0.01332 | 21.23 FORMULAS: R = H - E - FS = K[SQRT(L/T)] P = (R/W) 100 $W = (J \cdot 100) / C$ $J = D \cdot G$ SEQUOIA ANALYTICAL TEM . 600 Bancroft Way Berkeley, CA 94710 Client Project ID: W.O. #4231 Sampled: Jul 30, 1992 Sample Descript: Soil, N1-A-4'-4.5' Method of Analysis: ASTM D422-63 Received: Analyzed: Aug 14, 1992 Aug 26, 1992 Attention: Tom Paulson Lab Number: 208-3078 Reported: Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 165.19g 16.41g 90.07% TOTAL SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE IDEAL PAN = 0.0IDEALTOTAL = (B) | SIEVE SIZE | WEIGHT
RETAINED, g | % RETAINED | CUMULATIVE
% RETAINED | CUMULATIVE
% PASSING | |------------|-----------------------|------------|--------------------------|-------------------------| | 1½in | 0.0 | 0.0 | 0.0 | 100 | | 3/8in | 6.91 | 4.2 | 4.2 | 95.8 | | No.4 | 3.40 | 2.1 | 6.3 | 93.8 | | No.10 | 6.10 | 3.7 | 10.0 | 90.1 | | | | | | | | PAN | 0.0 | | <u> </u> | | #### HYDROMETER TEST | ELAPSED TIME | TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |--------------|-------|-------------|-------------|------|-----------| | (T) | •℃ | READING (H) | READING (R) | (L) | DIAM. (S) | | 2 | 22 | 41 | 37 | 10.2 | 0.030 | | 5 | 22 | 36 | 32 | 11.1 | 0.020 | | 10 | 22 | 34 | 30 | 11.4 | 0.014 | | 15 | 22 | 32 | 28 | 11.7 | 0.012 | | 25 | 22 | 29 | 25 | 12.2 | 0.0083 | | 40 | 22 | 27 | 23 | 12.5 | 0.0074 | | 60 | 22 | 26 | 22 | 12.7 | 0.0061 | | 90 | 22 | 24 | 20 | 13.0 | 0.0051 | | 120 | 22 | 22 | 18 | 13.3 | 0.0044 | | 1440 | 22 | 18 | 14 | 14.0 | 0.0013 | | % SUSPENDED | | |-------------|---| | (P) | | | 52 | | | 45 | | | 42 | | | 39 | | | 35 | | | 32 | _ | | 31 | | | 28 | | | 25 | | | 20 | | WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): MENISCUS CORRECTION FACTOR (F): TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): | 65g | |---------| | 0.986 | | 2.65 | | 3 | | 1 | | 0.01332 | 16.41 FORMULAS: R = H - E - F S = K[SQRT(L/T)] P = (R/W) 100 $W = (J \cdot 100) / C$ $J = D \cdot G$ SEQUOIA ANALYTICAL 600 Bancroft Way Berkeley, CA 94710 Client Project ID: W.O. #4231 Sampled: Jul 30, 1992 Sample Descript: Method of Analysis: ASTM D422-63 Soil, N1-A-8'-9' Received: Analyzed: Aug 14, 1992 Aug 27, 1992 Attention: Tom Paulson Lab Number: 208-3081 Reported: Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT
RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 158.95g 54.27g 65.86% SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE IDEAL PAN = 0.0IDEALTOTAL = (B) | | SIEVE SIZE | WEIGHT
RETAINED, g | % RETAINED | CUMULATIVE
% RETAINED | CUMULATIVE
% PASSING | |---|------------|-----------------------|------------|--------------------------|-------------------------| | ſ | 1½in | 0.0 | 0.0 | 0.0 | 100 | | ı | 3/8in | 33.74 | 21.2 | 21.2 | 78.8 | | [| No.4 | 8.19 | 5.2 | 26.4 | 73.6 | | Į | No.10 | 12.34 | 7.8 | 34.1 | 65.9 | | ļ | | | | | | | l | PAN | 0.0 | | <u> </u> | | TOTAL 54.27 #### HYDROMETER TEST | | ELAPSED TIME | TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |---|--------------|-------|-------------|-------------|------|-----------| | | (T) | •C | READING (H) | READING (R) | (L) | DIAM. (S) | | Ľ | 2 | 21 | 27 | 23 | 12.5 | 0.034 | | | 5 | 21 | 23 | 19 | 13.2 | 0.022 | | | 10 | 21 | 20 | 16 | 13.7 | 0.016 | | | 15 | 21 | 19 | 15 | 13.8 | 0.013 | | L | 25 | 21 | 18 | 14 | 14.0 | 0.010 | | L | 40 | 21 | 17 | 13 | 14.2 | 0.0080 | | L | 60 | 21 | 16 | 12 | 14.3 | 0.0066 | | L | 90 | 21 | 15 | 11 | 14.5 | 0.0054 | | L | 120 | 21 | 14 | 10 | 14.7 | 0.0047 | | L | 1440 | 21 | 12 | 8 | 15.0 | 0.0014 | | % SUSPENDED | |-------------| | (P) | | 24 | | 20 | | 16 | | 15 | | 14 | | 13 | | 12 | | 11 | | 10 | | 8 | | | WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): MENISCUS CORRECTION FACTOR (F): TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): 65g FORMULAS: 0.987 2.65 3 0.01348 R = H - E - F S = K[SQRT(L/T)]P = (R/W) 100 $W = (J \cdot 100) / C$ $J = D \cdot G$ SEQUOIA ANALYTICAL ∞ 600 Bancroft Way Berkeley, CA 94710 Client Project ID: W.O. #4231 Sampled: Jul 28, 1992 Sample Descript: Soil, N-BKG-4.5'-5.0' Method of Analysis: ASTM D422-63 Received: Analyzed: Aug 14, 1992 Aug 26, 1992 Attention: Tom Paulson Lab Number: 208-3079 Reported: Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 240.72g 75.65g 68.57% SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE IDEAL PAN = 0.0IDEALTOTAL = (B) | | | WEIGHT | | CUMULATIVE | CUMULATIVE | | |---|------------|-------------|------------|------------|------------|---| | | SIEVE SIZE | RETAINED, g | % RETAINED | % RETAINED | % PASSING | | | | 1½in | 0.0 | 0.0 | 0.0 | 100 | _ | | | 3/8in | 34.96g | 14.5 | 14.5 | 85.5 | _ | | | No.4 | 13.58g | 5.6 | 20.2 | 79.8 | _ | | | No.10 | 27.11g | 11.3 | 31.4 | 68.6 | _ | | | | | | | | - | | | | | | | | _ | | _ | PAN | 0.0 | | | | _ | #### **TOTAL** 75.65g #### HYDROMETER TEST | ELAPSED TIME | TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |--------------|-------|-------------|-------------|------|-----------| | (T) | °C | READING (H) | READING (R) | (L) | DIAM. (S) | | 2 | 22 | 29 | 25 | 12.2 | 0.033 | | 5 | 22 | 26 | 22 | 12.7 | 0.021 | | 10 | 22 | 23 | 19 | 13.2 | 0.015 | | 15 | 22 | 21 | 18 | 13.3 | 0.013 | | 25 | 22 | 19 | 15 | 13.8 | 0.0099 | | 40 | 22 | 17 | 13 | 14.2 | 0.0079 | | 60 | 22 | 16 | 12 | 14.3 | 0.0065 | | 90 | 22 | 15 | 11 | 14.5 | 0.0053 | | 120 | 22 | 14 | 10 | 14.7 | 0.0047 | | 1440 | 22 | 11 | 7 | 15.2 | 0.0014 | | % SUSPENDED | |-------------| | (P) | | 27 | | 24 | | 20 | | 19 | | 16 | | 14 | | . 13 | | 12 | | 11 | | 8 | WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): MENISCUS CORRECTION FACTOR (F): TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): | 65g | FORMULA | |-------|---------| | 0.982 | R = H - | | 2.65 | S = K[| 0.01332 SQRT (L/T)] P = (R/W) 1003 $W = (J \cdot 100) / C$ $J = D \cdot G$ E-F SEQUOIA ANALYTICAL SCON . 600 Bancroft Way Berkeley, CA 94710 Client Project ID: W.O. #4231 Sampled: Jul 28, 1992 Sample Descript: Soil, N-BKG-8.5'-9' Method of Analysis: ASTM D422-63 Received: Analyzed: Aug 14, 1992 Aug 27, 1992 Attention: Tom Paulson Lab Number: 208-3080 Reported: Sep 15, 1992 #### PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER #### SIEVE TEST (A) TOTAL WEIGHT OF SAMPLE: (B) WEIGHT RETAINED IN NO. 10 SIEVE: (C) % PASSING NO. 10 SIEVE: 216.47g 77.90g 64.01% **TOTAL** 77.90 SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE IDEAL PAN = 0.0 IDEAL TOTAL = (B) | | WEIGHT | | CUMULATIVE | CUMULATIVE | |------------|-------------|------------|------------|------------| | SIEVE SIZE | RETAINED, g | % RETAINED | % RETAINED | % PASSING | | 1½in | 0.0 | 0.0 | 0.0 | 100 | | 3/8in | 28.87 | 13.3 | 13.3 | 86.7 | | No.4 | 26.25 | 12.1 | 25.4 | 74.5 | | No.10 | 22.78 | 10.5 | 36.0 | 64.0 | | | | | | | | PAN | 0.0 | | <u> </u> | | #### HYDROMETER TEST | ELAPSED TIME | TEMP. | HYDROMETER | CORRECTED | | PARTICLE | |--------------|-------|-------------|-------------|------|-----------| | (T) | .€ | READING (H) | READING (R) | (L) | DIAM. (S) | | 2 | 21 | 36 | 32 | 11.1 | 0.032 | | 5 | 21 | 31 | 27 | 11.9 | 0.021 | | 10 | 21 | 27 | 23 | 12.5 | 0.015 | | 15 | 21 | 25 | 21 | 12.9 | 0.013 | | 25 | 21 | 23 | 19 | 13.2 | 0.0098 | | 40 | 21 | 22 | 18 | 13.3 | 0.0078 | | 60 | 21 | 21 | 17 | 13.5 | 0.0064 | | 90 | 21 | 19 | 15 | 13.8 | 0.0053 | | 120 | 21 | 18 | 14 | 14.0 | 0.0046 | | 1440 | 21 | 15 | 11 | 14.5 | 0.0014 | | % SUSPENDED | |-------------| | (P) | | 32 | | 27 | | 23 | | 21 | | 19 | | 18 | | 17 | | 15 | | 14 | | 11 | | | V CHICDENDED WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E): MENISCUS CORRECTION FACTOR (F): TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K): FORMULAS: 65g 0.972 R = H - E - FS = K[SQRT(L/T)]2.65 3 1 0.01348 P = (R/W) 100 $W = (J \cdot 100) / C$ $J = D \cdot G$ SEQUOIA ANALYTICAL *बब*ळ्य # ENGINEERING-SCIENCE # CHAIN OF CUSTODY RECORD | | | | | ر
ا | CHAIN |
O | CUSTODY | RECORD | Q. | - | | | |-----|-----------------|----------------------|--|-------------------------|--------------|-----------------|---------------|----------|----------|----------|--------------------------------|---------------| | | ES, J | ES JOB NO. | PROJE | PROJECT NAME/LOCATION | · | PRE | PRESERVATIVES | IVES | REQUIRED | IRED | BILP T | TO: | | | La , | | 4.2 | 4231, | | (2 | | | | | | • | | | FIELD | FIELD CONTACT: | •• | | | | NALYBI | | REQUIRED | D | | | | | SAMPLE | SAMPLERS NAMES | 78 (| SIGNATURES | i | | | | | | | , | | | An | Indular
ESTELLIFU | J,
000000000000000000000000000000000000 | Sudelos / Serves TRINOS | 1.58) | 3718 .
73948 | 3718 (| | | | | | | | | | | 1 | | 2840
N149 | | | | | | | | | DATE | TIME | FIELD & | FIELD SAMPLE IDENTIFIER | | | | | | | REMARKS | | | | 7/31/92 | | N2-V-3 | N2-V-3-4, 4231.03A | | | | <u>X</u> | W.C.M. | | Report results ordinisail hus. | drusail has | | | 1/31/92 | | N2-11-8 | N2-11-8-9, 4231,0 4A | > | | | | 102 | 7 | Use MOL'S for recorting units | torting units | | | 7/30/92 | | N1-14-4 | N1-A-4'-4,5' 4231,0 5B | | | | | 471/8 | ~ | Report method blank, mslins) | ak, mslins) | | | 7/28/92 | · | N-BKG | N-BKG-4,5-5,0, 4231, 7B | \ | | | | N
N | | Normal 3614 TAT. | MT. | | | 7/28/92 | | N-BKG- | N-BKG-B,5'-9' 4231, 9.8 | ` | | | | N | | Roomt to: Tom Paulson | Olm Poulsor | | | 1/30/42 | | 141-19-8-91 | 8-9' , 4231,10C | \ | | | | XCX. | | | KSBL | Phosohorone | غر
پر
و | 40 H | 365.3 | 7 | 200 | | | ادا | | | | | | |) | | | + | | | | | | | | | | | 1 (| | | | | | | | FIELD C | CUSTODY I | RELINQUIBHED | (виер ву: | the | Mela | 5 | | | DATE: 02 | DATE: 06/1/192 TIME: | | | * | BRIPPED VIA: | . VIA: | N | AIRBILL # | | ON RECEIPT | fpr: | CUSTODY | | BEALB? | ; TEMP | o | | ç | TOTAL | ED FOR LA | LIVED FOR LABORATORY | IV BY: | ļ , | | | | | DATE: O | //8//9 TIME: | 7. C. V. V. | | | | 707 | | 1 | } | | 1 | | | - | | 3. C | BERKELEY LABORATORY 600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 841-7353 Report Date: September 23, 1992 Work Order No.: 4254 Client: Jeff Kittle Battelle 505 King Ave. Columbus, OH 43201 Date of Sample Receipt: 8/19/92 Your soil samples identified as: N3-V-6'-7' N3-A-2'-3' N3-A-6'-7' were analyzed for pH, alkalinity, iron, moisture, total kjeldahl nitrogen and total phosphorus. Finally, your soil samples identified as: N3-V-7'-7.5 N3-C-7.5'-8 N3-A-2'-3' N3-A-6'-7' were analyzed for BTEX by EPA Method 8020, TRPH by EPA Method 418.1 and soil moisture. The analytical reports for the samples listed above are attached. **GC VOLATILES DATA PACKAGE** #### BTEX CASE NARRATIVE WORK ORDER NO. 4254 EPA METHOD 8020 These four soil and water samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Methods 8020. QAPjP specified compounds and spiking amounts were used for the surrogates and matrix spike/spike duplicates. ESBL QC acceptance criteria were used for the surrogates. ESBL QC acceptance criteria were for the matrix spike/spike duplicates. All analytes found at concentrations greater than ESBL reporting limits were quantitated on a second dissimilar column. All samples were analyzed within EPA Data Validation Technical Holding Times. Four blanks were analyzed with these samples and met method acceptance criteria for surrogates and contamination. The continuing calibration checks used for quantifying these samples met method acceptance criteria. All surrogate recoveries were within ESBL acceptance criteria. 92-BT4254CN BTCN-FRM #### GC ANALYTICAL REPORT Analytical Method 8020 Aromatic Compounds Work Order NO.: 4254 % Moisture: 14 Client ID: N3-V-7'-7.5 Matrix:SOIL Laboratory ID:4254-02 Level:LOW Sample wt./vol: 1 G Unit:ug/KG Dilution Factor: Date Analyzed:08/28/92 Date Confirmed:08/27/92 | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | |---------------------------------------|-------------------
------------------------|--------------------| | = = = = = = = = = = = = = = = = = = = | | | | | Benzene | ND | ND | 3.5 | | Ethyl Benzene | 9 | 49 D-2.5 | 2.9 | | Toluene | ND | 7100 | 4.1 | | Xylenes (total) | 64 | 220 D-2.5 | 5.2 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: Rubrus #### GC ANALYTICAL REPORT Analytical Method 8020 Aromatic Compounds Work Order NO.: 4254 % Moisture: 15 Client ID:N3-A-2'-3' Matrix:SOIL Laboratory ID: 4254-04 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed:08/26/92 Date Confirmed:08/27/92 | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | |-----------------|-------------------|------------------------|--------------------| | | | | | | Benzene | ND | ND | 0.7 | | Ethyl Benzene | 8 | 5 | 0.6 | | Toluene | ND | ND | 0.8 | | Xylenes (total) | 46 | 20 | 1.1 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: Work Order NO.: 4254 % Moisture: 15 Client ID:N3-A-6'-7' Matrix:SOIL Laboratory ID: 4254-06 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08/26/92 Date Confirmed: 08/27/92 | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | |-----------------|-------------------|------------------------|--------------------| | | | | | | Benzene | ND | ND | 0.7 | | Ethyl Benzene | ND | · · и D | 0.6 | | Toluene | ND | ND | 0.8 | | Xylenes (total) | 1.3 | 1.9 | 1.1 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: Redri Work Order NO.: 4254 % Moisture: 20 Client ID: N3-C-7.5'-8 Matrix:SOIL Laboratory ID:4254-07 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08/26/92 Date Confirmed:NA | Compound | Primary | Confirmatory | Reporting | |--|---------|--------------|-----------| | #===================================== | Result | Result | Limit | | Benzene | ND | ND | 0.8 | | Ethyl Benzene | ND | ·· ND | 0.6 | | Toluene | ND | ND | 0.9 | | Xylenes (total) | ND | ND | 1.1 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: A SW Work Order NO.: 4254 % Moisture:NA Client ID: METHOD BLANK Matrix:SOIL Laboratory ID:MSVG5920824 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed:08/24/92 Date Confirmed:NA | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | |-----------------|-------------------|------------------------|--------------------| | _ | | | | | Benzene | ND | ND | 0.6 | | Ethyl Benzene | ND | ·· ND | 0.5 | | Toluene | ND | ND | 0.7 | | Xylenes (total) | ND | ND | 0.9 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: Money Work Order NO.:4254 % Moisture:NA Client ID: METHOD BLANK Matrix:SOIL Laboratory ID:MSVG5920826 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08/26/92 Date Confirmed:NA | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | |-----------------|-------------------|------------------------|--------------------| | Benzene | ND | ND | 0.6 | | Ethyl Benzene | ND | ·· ND | 0.5 | | Toluene | ND | ND | 0.7 | | Xylenes (total) | ND | ND | Ø.9 | | • | | | 0.5 | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: MM Work Order NO.:4254 % Moisture:NA Client ID: METHOD BLANK Matrix:SOIL Laboratory ID:MSVG5920828 Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed: 08/28/92 Date Confirmed:NA | | Date Confirmed: NA
 | | | | |-----------------|------------------------|------------------------|--------------------|--| | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | | | Benzene | ND | ND | 0.6 | | | Ethyl Benzene | ND | ·· ND | 0.5 | | | Toluene | ND | ND | 0.7 | | | Xylenes (total) | ND | ND | 0.9 | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR GROUP LEADER: MW Work Order NO.: 4254 % Moisture:NA Client ID: METHOD BLANK Matrix:SOIL Laboratory ID: MSVG3920827 CONF. Level:LOW Sample wt./vol: 5 G Unit:ug/KG Dilution Factor: 1 Date Analyzed:08/27/92 Date Confirmed: NA | | | | · · · · · · · · · · · · · · · · · · · | |-----------------|-------------------|------------------------|---------------------------------------| | Compound | Primary
Result | Confirmatory
Result | Reporting
Limit | | | | | = = = = = = = = = = = = = | | Benzene | ND | ND | 0.6 | | Ethyl Benzene | ND · | ·· ND | 0.5 | | Toluene | ND | ND | 0.7 | | Xylenes (total) | ND | ND | 0.9 | | | | | | ND-Not Detected NA-Not Applicable D-Dilution Factor ANALYST: LR | ES-ENGINEERING | SCIENCE. | INC. | |----------------|----------|------| |----------------|----------|------| 600 BANCROFT WAY BERKELEY, CA 94710 ## SURROGATE PERCENTAGE RECOVERY BTEX AROMATIC COMPOUNDS BY 8020 MATRIX: SOIL COLUMN ID: VGC5 DB-624 (Primary column) LABORATORY NO. a-a-a-TRIFLUOROTOLUENE | MSVG5920824 | 100 | |--------------|-----| | MSVG5920824A | 99 | | MSVG5920824B | 98 | | MSVG5920826 | 98 | | 4254-04 5G | 133 | | 4254-06 5G | 120 | | 4254-07 5G | 114 | | MSVG5920828 | 104 | | 4254-02 1G | 120 | | ES-ENGINEERING SCIENCE, IN | 600 BANCROFT WAY BERKELEY, CA 94710 | |----------------------------|---| | | SURROGATE PERCENTAGE RECOVERY BTEX AROMATIC COMPOUNDS BY 8020 | | MATRIX: SOIL | COLUMN ID: VGC3 VOCOL (Confirmatory column) | | LABORATORY NO. | a-a-a-TRIFLUOROTOLUENE | | | | | MSVG3920827
4254-02 2G | 100
99 | 98 98 4254-04 5G 4254-06 5G # TOTAL RECOVERABLE PETROLEUM HYDROCARBONS DATA PACKAGE # ORGANIC ANALYTICAL REPORT Work Order No.: 4254 Parameter: TPH Matrix: Soil Unit: mg/Kg Analytical Method: 418.1 Date Extracted: 09/03/92 QC Batch NO.: S92QCB022TPH Date Analyzed: 09/04/92 | Sample ID: | Client ID: | Result | Reporting
Limit | Percent
Moisture | |---|--|-----------------------------|-----------------------|------------------------------| | | | | | MOISCUIE | | 4254-02
4254-04
4254-06
4254-07
MSTPH920903 | N3-V-7'-7.5'
N3-A-2'-3'
N3-A-6'-7'
N3-C-7.5'-8'
METHOD BLANK | 350
54
68
83
ND | 5
5
5
5
4 | 14.1
14.8
15.2
19.9 | NA_ Not Analyzed ND_ Not Detected ANALYST: GROUP LEADER: Kum # ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate Work Order NO.: 4254 QC Sample NO.: SSTPH920903A & B Analytical Method: 418.1 Blank I.D.: MSTPH920903 Matrix: Soil QC Batch NO.: S92QCB022TPH Unit: mg/Kg | | | | | | **** | | | | = = | |-----------|------------------|----|----|----|--------|-----|-----|-----|------| | Parameter | Date
Analyzed | BR | SA | BS | PR | BSD | PR | RPD | | | ******* | | | | | ====== | | | | | | TPH | 09/04/92 | | | | | | 107 | 0 | = == | BS-Blank Spike BSD-Blank Spike Duplicate SA-Spike Added BR_Blank Result NA-Not Applicable NC-Not Calculated ND-Not Detected RPD=((BS-BSD)/((BS+BSD)/2))*100 PR=((BS OR BSD -BR)/SA)*100 ANALYST: QUALITY CONTROL: MB # INITIAL CALIBRATION SHEET HORIER OIL CONTENT ANALYZER | METHOD : 4181 | |--| | INSTRUMENT SERIES : EXT-5- 920904 | | STANDARDS PREP REF : LNN 281-77 - 01,2,3,4,5 | | W.O. NO.(s): | | RUN DATE : _09-04-92 | CALIBRATION DATA STD CONCENTRATIONS IN mg/L STD 1 = 84.0 STD 2 = 42.0 STD 5 = 21.0 STD $\Delta = 10.0$ STD 5 = 5.0 mg/L mg/L mg/L mg/L | ן . םא יאט | SAMPLE ID 1 | REP 1 | READINGS
 REF 2 | (mg/L)
REP 3 | REF 4 | AUG RONG
REP 2-5-4 | |---------------|---------------|-------|---------------------|-----------------|-------|-----------------------| | 1 | FREON | 0 | - F | -1 | | - t* | | 2 | | 68 | 80 | 82 | 82 | 82 | | 3 | std 2 | 48 | 43 | 42 | 42 | 42 | | 4 | Std3 | 24 | 21 | 21 | | 21 | | 5 | std 4 | 11 | 10 | 10 | 10 | 10 | | 6 | std 5 | 6 | 5 | 4 | 4 | . 4 | | 5 09 104 1921 | 7 CB 09/04/92 | |)
 | | | | | . | 7 CV 09/04/92 | |
 -
 | | | | CALIBRATION CURVE : CONC. FOUND = m(AVG. RONG) - b WHERE m = SLOPE OF CURVE = 1.013 b = Y INTERCEPT OF CURVE = 0.334 CORRELATION COEFFICIENT OF LINEAR REGRESSION = 0.99957 IS P WITHIN LIMITS (P > .995) Yess IF P < .995 REPEAT CALIBRATION WITH FRESH STOS. | COMMENTS | : | | |----------|---|--| | | | | | | | | V NS 9/4/4- # CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER | 40 | 4267-04 | 1 | 1 4 | 10 | 1 0 | | REP 2+5+4 | <u> 10166.</u>
1 | |-------------------
--|--|-----------|-----------------------|--|--|--|---------------------------------------| | . (12) | CCB_ | ļ | 10 | 10 | 10 | | 124 mm 17 17 17 17 17 17 17 17 17 17 17 17 17 | 1 | | 421 | - C / | ! | 16 | 119 | 120 | 120 | · | 1 | | -44 | | | <u> </u> | | | | | | | - 77 1 | | 1 | <u> </u> | | | | n Light on the co | | | 461 | | <u> </u> | | 1 | | **** . *** | 1 | | | | | <u> </u> | <u> </u> | : | 1 | | 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <u> </u> | | 481 | | 1 \ | <u> </u> | <u> </u> | <u> </u> | <u> </u> | : | 1 | | - 1 | | <u>'</u> | <u> </u> | 1 | | <u> </u> | | <u> </u> | | - 501 | | 1 - 12-4 | | l se managana | 1 | | | <u></u> _ | | | | | | 1 |] | 1 | Constant Constant | <u> </u> | | 521 | | | | - | <u>. </u> | 1 | <u> </u> | <u> </u> | | | | | | | 1 | 1 | <u> </u> | <u> </u> | | | | | 1 | 1 | ľ | <u>' </u> | | <u> </u> | | | | | | 1 | !
 | | | <u> </u> | | <u>-</u> | | | | 1 | | 1 | <u> </u> | <u>!</u> | | | | | <u> </u> | · | | 1- | | <u> </u> | | <u> </u> | · . · | 1 | | | [| 1 | many egament that the control of | L | | | **** | 1 | · · · · · | Service actions | the state was | Contractives | Warrani Carini Carini | | | 77 (AT) | | <u>;, </u> | | | | | manage a grande of a property of the con- | <u> </u> | | | and the second s | 21 No.22. | | 25 T. 25 T. A. | name (Mark) | TO ARREST AND AND | The state of s | | | | The same of sa | | | بمنتاب بالأداد والكلك | | -TAMESTER | | · · · · · · · · · · · · · · · · · · · | | | | | 37.07.223 | SAME THE | | S-MATORESEE | | CAPETER STA | | | magazza i i e jeji i jezi za | The supplied of the | | ACTION TO SHOULD BE | THE PERSON | Notice to the second | 連門書書の表示され | . 242 -314-66 | | 1 FT | | | | anti e ereken uzbu A. | A 1 44 44 4 5 1 | 7.72 | ALTOUR MARKET ! | | | | | | A | teri ale e e | | <u> </u> | Company Communication | | | 12/14/2 | | 1000 | | | | | The state of s | | | instance (| and the second | | | | | | - | : | | 701 | | | | _ | | | Seattle Land of the Control C | 1 1 | | . 1 | | | | | | | | | | | | | | | - | | · | | # CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER | | - | | | | |--------|---|-------|-----|-------| | 1ETHOD | _ | 418.1 | • | | | ובותטט | • | 7737 | . • | | | | | | | ии ии | WO NO. (s): _____ STRUMENT SERIES : EXT-5- 220904 ANDARDS PREP REF : LNN-288-77-01,02,03,04,05 VERIFICATION STD. LNN- 288-76-01 | | | 1 | 1 | REQUIN | DS (max | (1.) | | | | |----------------|--------------------|---------------|--------------|----------|----------|------------------|-------------------------|--|----------------| | NO.1 | | <u> OTLUT</u> | I REP 1 | LI REP 2 | L REP 3 | it)
51 REP 4. | AUG RONG
 REF 2+5+4 | :: Le | ¢ | | | 108 | | | 1 -1 | [-1 | 1 | 1 -1 | <u> 17 (5 F.</u> | 1 / | | 8 ! | | | 16 | 1 20 | 20 | | 20 | 919 | (20.59 05/ | | | MSTPH 420903 | | -1 | 1 -1 | | | -1 | 1000 | 1 (20,27 7) | | | SSTPH920903A | | 36 | 1 42 | 1 43 | 1 43 | 43 | 1 | <u>.</u> | | | SSTPH920903 B | | 43 | 1 43 | | 1 | 43 | 1 | <u>.</u>
1 | | 121 | | | 1 /2 | i 7 | 7 | 1 7 | 7 7 | } | <u>1</u>
1 | | <u> </u> | -02 | | 4 | 1 1 | | | | ! | <u>.</u>
t | | 141 | -03 | | 2 | 2 | 2 | 1 | 2 | <u>'</u>
1 | <u>.</u> | | · . | -04 | | 2 | 1 1 | <u> </u> | | | 1 | <u>.</u> | | <u> 16 I</u> | 4254-02 | | 63 | ! 73 | 1 74 | 1 74 | . 74 | <u>. </u> | <u>!</u>
! | | | - 04 | | 23 | 1 12 | 1 11 | 11 | 11 | <u> </u> | 1 | | 18 ! | - 06 | | | 1 14 | 1 14 | 1 | 14 | <u></u> | <u>.</u> . | | | CCB 1 | · | 2 | 1/ | <u> </u> | -1 | - 01 | <u></u> | <u>!</u>
i | | 20 | ccv | | 16 | 1 20 | 20 | 1 | 20 | 28 | (20.59 75) | | | 4254-07 1 | | | 16 | 1 16 | 1 16 1 | 16 | | | | 22 | | | 2/ | 22 | 22 | 1 | 2.2 | <u></u> | <u>.</u>
I | | 24.5 | S 09-04-92 -03 | | 112 | | | | | | <u>'-</u>
! | | 24 1 | 45 09/04/92 -032 1 | 1+1 | 68 | 1 63 | 62 | 1 62 1 | 62 | | <u>'-</u>
 | | 261 | CCB | ! | 7 | 1 0 | -1 | | -1 | | <u>-</u> | | | CCV 1 | | 16 | 1 .20 | 20 | | 20 | 98 | (20.59 ms) | | 26 | MWTPH9208041 | <u> </u> | | 0 | 0 | 1 | | | | | | SWTP 4 920 904 A | | 31 | 1 36 | 37 | 137 | | | _
 | | 201 | 3WTPHAZO904B | | 39 | 39 | 39 | | | | -
! | | <u> </u> | 4257-01 | | 7 | 13 | | | | | <u> </u> | | 32 | 4261-01 | | | -0 | 0 | 1 | | | _ | | <u> </u> | 4261-02 | | | 0 | | 1 | | | - | | 34 | 42/3-01 | | | 0 | | 11 | | | - | | 7 : | 4213 - 03 | | | 0 ! | 0 | 1 | | | - | | 36 | 4263 - 05 | | | | | <u> </u> | | | - | | | CCB 1 | | | 0 | | <u> </u> | | • | - | | 381 | 117 | | <u> </u> | | | | [| | _ | | 1 | 4267-04 | | 16 | 18 | - | 20 | | | - | | | 4271 01 | <u>.</u> | -4- | 0 | 0 | 1 | | | • | 1. FOR CONTINUING CALIBRATION CHECK ONLY % DIFF = R1-R2 100 RE R1 IS THE CONCENTRATION OF STD 3 FROM THE INITIAL CALIBRATION HERE R2 IS THE CONCENTRATION OF STO 3 FROM THE CALIBRATION CHECK % DIFF IS >15.0 RECALIBRATE ANALYZER BEFORE RUNNING ANY MORE SAMPLES 2. RUN CONTINUING CALIBRATION AFTER EVERY 10 SAMPLES | COMMENTS : | : | DS 9/4/a. | |------------|---|-----------| | ·• | | | | 7 | ι | J | , | | |-----|---|---|---|--| | - 1 | | | | | | | | | | | # DATA SUMMARY SHEET | | | | MARY SHEET
IL CONTENT | | r n | PAGE | of | - | |---------------------------------------|---------------------------------------|---|-----------------------------------|------------------|--------------|------|-------------------------------|---| | METHOD : <u>'</u> | | | | | WO NO. (: | 5) : | by/2: 09 | 104/4 | | STANDARDS PRI | EP REF =
_ | see ralst | Let. | | | Ô | 174/4/4. | | | Q C BATCH # | : Jee ext | macf sheet | | | | | | | | ANALYST : | A-5 /05 | _ | | | | | | | | SAMPLE ID | AVG RDNG | CONC
FOUND
(mg/L)
~0.68
43.88
7.42
1.35
75.27
11.47
14.51
16.54
22.61
63.12 | EXTRACT VOLUME (mls) | | (m) (am) | % | 68.4
82.6
95.2
521.6 | \\ \ \ \ \\ \\ \ \ \ \ \ \ | | SAMPLE ID SSTPHGLOGOZA SSTPHGLOGOZA | SPIKE AC
 (mg/)
 165
 165 | | NC. FOUND
(mg/火)
176
176 | PERCEI
RECOVI | NT RPD ERY | | ,
NS 9/4/4. | | COMMENTS : # **INORGANICS DATA PACKAGE** ### INORGANICS ANALYTICAL REPORT | Client:
Project: | ES-Denver
Newark AFB | | | Work Order:
Matrix: | | 4 25 4
Solid | | |------------------------------|-------------------------|------------------|---------------------|-------------------------------------|---------------------------|------------------------------------|----------------------------------| | Client's II |): N3-V
-6'-7'. | N3-V
-7'-7.5' | N3-A
-2'-3' | | | | | | Sample Date
% Moisture: | | 1015
08/17/92 | 1115
08/17/92 | | | | | | Lab ID: | 4254.01 | 4254.02 | 4254.03 | | | | | | Parameter | | Results | | Method | Normal
Report
Limit | Units | Date
Analyzed | | Alkalinity
Moisture
pH | 380.
14.6
8.1 | NR
14.1
NR | 290.
10.5
7.8 | SM 403(M)
ASTM D2216
EPA 9045 | 50
5 .1
NA | mg/Kg CaCO3
% by wt
pH Units | 08/26/92
08/28/92
08/28/92 | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ANALYST: ND- Not Detected NR- Analysis Not Requested ### INORGANICS ANALYTICAL REPORT | Client:
Project: | ES-Denver
Newark AFB | | | Work Order:
Matrix: | | 4 25 4
Solid | | |-------------------------|-------------------------|------------------|------------------|-------------------------|---------------------------|-------------------------------|----------------------| | Client's ID | : N3-A
-2'-3' | N3-A
-6'-7' | N3-A
-6'-7' | | | | | | Sample Date % Moisture: | 1130
: 08/17/92 | 1135
08/17/92 | 1150
08/17/92 | | | | | | Lab ID: | 4254.04 | 4254.05 | 4254.06 | | | | | | Parameter | | Results | | Method | Normal
Report
Limit | Units | Date
Analyzed | | Alkalinity
Moisture | NR
14.8 | 280.
11.4 | NR
15.2 | SM 403(M)
ASTM D2216 | 50
5 .1 | mg/Kg CaCO3
% by wt | 08/26/92
08/28/92 | | pН | N R | 7.8 | nr | EPA 9045 | NA | pH Units | 08/28/92 | Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis Not Requested ANALYST: Von Sleator 600 Bancroft Way Berkeley, CA 94710 ### INORGANICS ANALYTICAL REPORT Client: Project: ES-Denver Newark AFB Work Order: Matrix: 4254 Solid Client's ID: N3-C -7.5'-8' 1500 Sample Date: 08/17/92 % Moisture: Lab ID: 4254.07 Parameter Alkalinity -----Results----- Normal Method Report Units Date Analyzed NR 19.9 SM 403(M) **ASTM D2216** 50 .1 Limit mg/Kg CaCO3 08/26/92 % by wt 08/28/92 Moisture рH NR EPA 9045 NA pH Units 08/28/92 Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected NR- Analysis Not Requested ANALYST: ### INORGANICS ANALYTICAL REPORT Client: Project: ES-Denver Newark AFB Work Order: Matrix: 4254 Solid Client's ID: Prep Blank Sample Date: % Moisture: Lab ID: Prep Blank Normal Parameter -----Results-----Method Report Units Date Limit Analyzed Alkalinity ND SM 403(M) 50 mg/Kg CaCO3 08/26/92 Moisture NA **ASTM D2216** .1 % by wt 08/28/92 pН NA EPA 9045 NA pH Units 08/28/92 Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis. NA- Not Applicable ND- Not Detected ANALYST: Non 2 ## INORGANICS QC SUMMARY - LAB CONTROL SAMPLE Work Order: 4254 % Moisture: NA Lab ID of LCS: Alkalinity: 452.20 LCS Matrix: Solid Units: mg/Kg CaCO3 | • | Date
Analyzed | LCS | Conc | % Rec | Advisory Limits % Rec | | | |------------|------------------|----------|----------|-------|-----------------------|--|--| | Parameter | LCS | Result | Added | LCS | Low High | | | | Alkalinity | 08/26/92 | 22800.00 | 23650.00 | 96 | 80 120 | | | Moisture 08/28/92 08/28/92 600 Bancroft Way Berkeley, CA 94710 ## INORGANIC QC SUMMARY - MS and MSD | Work Order: | | 4254 | | | | | % Moistur | e: | NA. | | |-------------|------------------|--|-----------|---------------|-----|-----------|-----------|----------------------------------|--------------|--------------| | Lab ID Spk/ | Dup: | Alkalinity Moisture
Blank Spk 4254.01 | | pH
4254.01 | | | Matrix: | | Solid | | | QC Batch: | | 452.20 | 451.48 | 453.30 | | | | ng/Kg Ca
% by wt.
pH Units | (Mois) |) | | • | Date
Analyzed | Unspiked | Results | | RPD | RPD
QC | -Conc Ad | ded- | Pero
Reco | ent
vered | | Parameter | MS/Dup | Sample | MS/Sample | MSD/Dup | | Limit | KS | MSD | MS | MSD | | Alkalinity | 08/26/92 | 0.00 | 22800.00 | 22850.00 | 9 | 20 | 23650.00 | 23650.00 | 96 | 97 | 14.45 8.06 1 20 20 14.60 8.11 * or # = Outside QC Limit: Non Sleator Date 9/09/92 REVIEWER: QC Limits for ? Rec: - 125 ANALYST: _______ File:M1QCHSWN Dat **METALS DATA PACKAGE** # CASE NARRATIVE WORK ORDER NO. 4254 METALS - SOILS The concentration of iron in sample N3V6-07 was greater than four times the spike added to the MS and MSD samples. The LCS and duplicate LCS results for iron were checked, and the laboratory was found to be in control. All iron results in this batch are therefore reported unqualified based on matrix spike recovery. Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference: | CLIENT ID | ABRIDGED ID | |------------|-------------| | N3-V-6'-7' | N3V6-7 | | N3-A-2'-3' | N3A2-3 | | N3-A-6'-7' | N3A6-7 | | | Inorganics Report | | | | |--------|--------------------|--------|--------|----| | INORGA | ANIC ANALYSES DATA | CLIENT | SAMPLE | ID | | | | INORGANIC | ANALYSES DATA | SHEET | | | |--------------|---------------|---------------|--------------------|----------|--------------|----------| | ab Name: E S | | | Contract: A | | N | 3V6-7 | | | | | 54S SAS No. | | | O.: CA40 | | | water): SOIL | | | | | 4254.01 | | evel (low/me | ed): LOW_ | | | Date Re | ceived: | 08/19/92 | | Solids: | _85. | 4 | | | | | | c | Concentration | Units (ug | /L or mg/kg dry | y weight |): MG/KG | | | | CAS No. |
 Analyte |
 Concentration | |
 M | | | | 7439-89-6 | Iron | 16900 | _ | _
_ P_ | | | | | | | - | _ _ | | | | | | | | _ _ | | | | | | | | _ | | | | | | | | _ _ | | | | | | | | _ _ | | | | | | | | _ | | | | | | | - | - | | | | | | | | _ | | | | | | | | - | | | | | | | | -!!
-!! | | | | | | | | _!!
_!! | | | | | | | _ | - | | | | | | | | - | | | | | | · | | -!! | | | | | | | | | | | mments: | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET | CLIENT | SAMPLE | ΤD | |--------|--------|----| | | | | | | | | | | | | | | |---------------|-------------|---------------|--------------------|--|-------------|------------|-------------|---| | ab Name: E_S_ | BERKELEY_1 | ABORATORY_ | _ Contract: A | FCE | E | | N3A2-3 | | | | | | 54S SAS No. | | | | G No . CA4 | ~ | | | | | | | | | | | | atrix (soil/v | | | | Lal | o Sam | ple I | D: 4254.03_ | | | evel (low/med | l): LOW_ | | | Dat | te Re | ceive | d: 08/19/92 | 2 | | Solids: | _89. | 5 | | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dr | y we | eight |): MG. | /KG | | | | CAS No. |
 Analyte |
 Concentration | c | Q | M | | | | | 7439-89-6 | Iron | 17800 | _ -
 _ - | | _
_ P | | | | I . | | | | <u> - -</u> | | | | | | , | | l | | - - | | _ | | | | • | | | | <u> </u> | | | | | | | | | | _ -
 | | - | | | | _ | | | | <u> </u> | | | | | | | | | | <u> </u> | | _ _ | | | | | |]
] | | - - | | - | | | | | | | | <u> </u> | | | | | | | | | | - - | | - | | | | | | | | | | | | | | | | /
 | | - - | | - | | | | | | | | -1- | | | | | | | | | | _ _
 _ _ | | _ | | | | | | | | _ _ | | - | | | | | | | | _ _
 _ _ | | | | | | 1 | • | | | | | | | | | | mments: | 1 | | INORGANIC | ANALYSES DATA | SHEET | CLIE | ENT SAMPLE ID | |---------------|-------------|---------------|--------------------|----------|-----------|---------------| | ab Name: E_S_ | BERKELEY_L | ABORATORY_ | Contract: A | FCEE_ | | N3A6-7 | | | | | 54S SAS No. | | _ sdg | No.: CA40 | | atrix (soil/w | | | | | | 4254.05 | | evel (low/med | l): LOW_ | _ | | Date F | Received: | 08/19/92 | | Solids: | _88. | 6 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dr | y weigh | nt): MG/K | CG | | | CAS No. |
 Analyte |
 Concentration | l l |
 M | | | | | l | 14500 | l i | _
 P | | | | | 1 | | | | | | | | | | - | | | | | | | | | _ _ | | | | | | | - | | | | | | | | - | | | | | | | | _
 _ | | | | | | | | _ | | | | | | | | - | _ | | | | | | | _ | _ _ | | | | | | | | _ _ | | | | | | | | | | | | | | | | | | | ·
} | | | | | | | | | | · | | | | | | | | | | | | | | mments: | | | | | | | | | | | | | | | | | | INORGANIC | ANALYSES DATA S | HEET | | | |-------------|---------------
------------|--------------------|-------------|------------------|------------| | ab Name: E_ | sberkeley_l | ABORATORY_ | _ Contract: AF | 'CEE |
 P
_ | PBLANK | | ıb Code: ES | BL Ca | se No.: 42 | 54S SAS No.: | | SDG N | o.: CA40 | | trix (soil | /water): SOIL | _ | | Lab Sam | ple ID: | PBK 460.94 | | vel (low/m | ed): LOW_ | | | Date Re | ceived: | 09/01/92 | | Solids: | 100. | 0 | | | | | | | Concentration | Units (ug | /L or mg/kg dry | weight |): MG/KG | : | | | CAS No. | Analyte |
 Concentration | c Q | и | | | | 7439-89-6 | Iron | 8.9 | _ | _
_ P | | | | | | | | _ | | | • | | | | | _ | | | | | | | - | _ | | | | | | | | - | | | | | | | _ | _ _ | | | | | | | _ | _ _ | | | | | | | _ | _ | | | | | | | _ | - | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | - | | | | | | | _ | _
_ | | | | | | | _ | - | | | | | | | | -! ! | | | | | | | | | | | nments: | FORM I - IN CLIENT SAMPLE ID | l e | Inorganics | Report | | | |---------------------|-----------------------|---------------------|--------------|---------------| | 1 | SPIKE SAMPL | E RECOVERY | CLIENT SA | MPLE II | | ab Name: E_SBERKEL | EY_LABORATORY_ C | ontract: AFCEE |
 N3V6- | -7 S 1 | | ab Code: ESBL | Case No.: 4254S | SAS No.: | _ SDG No.: | CA40 | | atrix (soil/water): | soir | Level | l (low/med): | LOW | | Solids for Sample: | _85.4 | | | | | Concentra | tion Units (ug/L or m | g/kg dry weight): N | 1G/KG | | | Control | ļ | ! | ļ | | | Analyte |
 Control
 Limit
 %R |
 Spiked Sample
 Result (SSR) | С |
 Sample
 Result (SR) | С |
 Spike
 Added (SA) | * % R |

 Q |

 M | |----------|---------------------------------|---------------------------------------|----------|-------------------------------|----|-----------------------------|---------|--------------|--| | Iron | | 18473.1403_ | <u> </u> | 16887.7056 | | 77.04 | _2057.9 | <u> </u> _ | P_ | | | | | _ | | _ | | | ļ_ | | | | | | _
 _ | | _ | | | _
 | | | | ļ | | _ | | _ | | | <u> </u> _ | | | | | | _ | | | | | _
 | !! | | | | | _ | | | | | <u> </u> _ | | | | | | _ | | | [] | | <u> </u> | | | | <u> </u> | | | | _ | | | <u> </u> _ | | | |
 | | | | _ | | |
 | | | | | | _ | | _ | | | _ | <u> </u> | | | <u></u> | | _ | | - | | | _ | | | | | | | | _ | | | | | | \ |
 | | - | | _ | | | _ | | | | | | _į | | _ | | | | | | | | | - | | - | | | - | | | | | | _ | | _ | | | !
! | | | | | | -! | | -! | | | _ | | | п | nments: | |---|---------| | | | | | | | | | FORM V (Part 1) - IN SPIKE SAMPLE RECOVERY CLIENT SAMPLE ID | Solids I | or Sample
Concent | e: _85.4
tration Units (u | g/I | or mg/kg dry | W | Level (lo | , | | | |-------------|------------------------------------|-------------------------------|--|-----------------------|----|-----------------------------|---------|------------|------------| | Analyte |
 Control
 Limit
 %R | Spiked Sample
Result (SSR) | C | Sample
Result (SR) | С |
 Spike
 Added (SA) | %R | Q | | | on | | 20309.9594_ | <u> </u> | 16887.7056 | _ | 77.55 | _4413.0 | -
 - | P. | | | | | ! _ | | _ | | | _ | _
 _ | | | !!
! | | <u> </u> | | _ | | | _ | <u> </u> _ | | | | | <u> </u> | | _ | | | | ¦_ | | |
 | | _ | | _ | | | _ | _ | | | | | <u> </u> | | _ | | | | <u> </u> | | | !!
!! | | _ | | | | | - | | | | <u> </u> | | - | | _ | | | _ <u>i</u> | <u> </u> _ | | | | | | | _ | | | _ | <u> </u> | | |
 | | - | | _ | | | _[| [_ | | | | | | | | | | | | | | | | _
 _ | | - | | l | - | _ | | | | | _ | | _ | | | <u>_i</u> | _ | | | | | | | _ | | | -[| | | | | | - | | _i | | | _[| | | | · | | -! | | -! | | ! | -! | | MATRIX SPIKE DUPLICATE | CLIENT | CAMDIE | TD | |--------|---------|----| | CHIDNI | SAMELLE | 10 | | ab Name: E_SBERKEL | EY_LABORATORY_ | Contract: AFCEE | N3V6-7SD | | |---------------------|-----------------|-----------------|------------------|---| | ab Code: ESBL | Case No.: 4254S | SAS No.: | SDG No.: CA40 | | | atrix (soil/water): | soir_ | Level | (low/med): _LOW_ | _ | | Solids for Sample: | _85.4 | % Solids for | Duplicate: _85. | 6 | Concentration Units (ug/L or mg/kg dry weight):MG/KG | | Control | Sample | i | Sample Spike | ļ | 1 | l | 1 | |---------|-----------|------------|--------------|----------------|----------|----------|--|------------| | N 1 | | | _ ! | l pambre pbive | _! | ! ! | 1 - | ! . | | Analyte | Limit | Spike (S) | cl | Duplicate (D) | C | RPD | ĮQ | } | | Iron | | 18473.1403 | | 20309.9594 | | 9.5 | - |
 P | | | | | | | <u> </u> | | i_ | i | | | | | _[_[| | - | | !- | <u> </u> | | | . | i | _ | | - |
 | - | <u> </u> _ | | | | | - | | | | - |
 | | | | 1 | _i | | | | i_ | i_ | | | !! | | _! | | -! | | !_ | <u> </u> _ | | | <u> </u> | | - | | - | [| - | | | | | l | | | | ;i | - |
 | | | <u> </u> | | _! ! | | _[| <u> </u> | | | | | l | i | - | | -! | | <u> </u> | <u> </u> | | | <u> </u> | ii | -11 | | - | !! | - | !
 | | | | | Ξi i | | | | | | | | | | _!! | | _ | !! | _ | | | | ! | f | -!! | | | !! | - | <u> </u> _ | | | | [| - | | - | <u> </u> | - | — | | | | | <u>_</u> i | | _i | <u> </u> | <u> </u> | | | | | | -!! | | _! | ļ! | 1-1 | | | | <u> </u> |
 | -!! | | -[|] | <u> -</u> | _ | | | ! ———— ! | ! [| -!! | · | ! | !! | !-! | _ | | ICP SERIAL DILUTION | EFA SAMPLE NO. | |---|----------------| | ab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE | N3V6-7L | | ab Code: ESBL Case No.: 4254S_ SAS No.: | SDG No.: CA40 | | ptrix (soil/water): SOIL_ Level (| low/med): LOW | # Concentration Units: ug/L | | | Serial | % | |-------------|----------------|------------|-------------------------| | | Initial Sample | Dilution | Differ- | | Analyte | Result (I) C | Result (S) | C ence Q | | Iron | 262482.23 | 289908.36 | _
_ 10.4_ _ P | | | | | _ - | | | | | | | | _ | | - | | | | | _ | | | _ | | - - - | | | | | _ | | | - | | - - - | | | | | _ | | | | | - - - | | | | | | | | | | - - | | | | | _ | | | | | - - - - | | | | | _ | | | <u> </u> | | _ | # Engineering Science - Berkeley Laboratory ## Method Detection Limits (Annually) | Lab Name: | E_SBERKE | LEY_LABOR | ATORY_ | Contract | : AFCEE | <u>,</u> | |------------|--------------------|--|-----------------|----------|----------------------------|---| | ab Code: | ESBL | Case No.: | 4254S_ | SAS No.: | | SDG No.: CA40 | | ICP ID Num | | | м | Date: | 09/01/9 | 2 | | lame AA I | D Number : | | | Matrix: | soir_ | | | Eurnace AA | ID Number | | | (ug/L in | 1.00g to | 100ml digestate) | | _ | | | | _ | | *************************************** | | |

 Analyte | Wave-
 Wave-
 length
 (nm) | Back-
ground |
 |

 MDL
 (ug/L) | | | | Iron |
 271.44 | | | 47.0 | P | | | |
 | | | | | | • | | | | | |

 | _ | Comments: | FORM X - IN ILMO2. ### PREPARATION LOG | ab | Name: | $\mathbf{E}_{_}$ | _S_ | BERKELEY | LABORATORY | | |----|-------|-------------------|-----|----------|------------|--| | | | | | | | | Contract: AFCEE____ ab Code: ESBL__ Case No.:_4254S_ SAS No.: ____ SDG No.:CA40__ ethod: P_ | EPA | | | • | |-----------|-------------|--------|--------| | Sample | Preparation | Weight | Volume | | No. | Date | (gram) | (mL) | | CA40 | _09/01/92 | 1.61 | 100 | | CA60 | _09/01/92 | 1.47 | 100 | | CA90 | _09/01/92 | 1.83 | 100 | | GA125 | 09/01/92 | 1.62 | 100 | | GA155 | _09/01/92 | 1.53 | 100 | | GA180 | _09/01/92 | 1.86 | 100 | | GA2115 | 09/01/92 | 1.63 | 100 | | GA240 | _09/01/92 | 1.84 | 100 | | GA255 | _09/01/92 | 1.87 | 100 | | LCSS | _09/01/92 | 1.00 | 100 | | LCSSD | _09/01/92 | 1.00 | 100 | | N3A2-3 | _09/01/92 | 1.62 | 100 | | N3A6-7 | _09/01/92 | 1.88 | 100 | | N3V6-7 | _09/01/92 | 1.82 | 100 | | N3V6-7S1_ | _09/01/92 | 1.52 | 100 | | N3V6-7S2_ | _09/01/92 | 1.51 | 100 | | PBLANK | _09/01/92 | 1.00 | 100 | | l | | | i | | 1 | | | | | | | | | | | | | | | 1 | İI | | | | 1 | | | | | | | | | | l | | | | | 1 | | i | | | l | | | | | l | | | | | l | | i | | | l | | i | | | | | i | | | | | | | FORM XIII - IN ILMO2.1 ### ANALYSIS RUN LOG Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____ ab Code: ESBL__ Case No.: 4254S_ SAS No.: ____ SDG No.:CA40__ nstrument ID Number: TJA 61 M_ Method: P_ Start Date: 09/03/92 End Date: 09/03/92 | | | ! | Analytes |----------|------|------|-------------|---|-------------|---------------------|-----| | EPA | | ! | [| | 1_ | Sample | D/F | Time | 8 | R | F | | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ļ | 1 | | | 1 | 1 | | | | | No. | | ! | ļ . | | E | ļ | ĺ | | | ļ | | ļ | | | l | l | 1 | l | l | l | 1 | I | ĺ | l | ĺ | İ | : 1 | | STD1 | 1 00 | 1 | ! —— | | - <u>-</u> | ļ_ | !_ | !_ | !_ | !_ | !_ | <u> </u> _ | !_ | <u> </u> _ | !_ | !_ | !_ | !_ | !_ | _ | !_ | _ | 1_ | 1_ | _ | _ | _1_ | | STD1 | | 1728 | ! | | _ X | | !— | ļ | !- | !- | !_ | !- | !_ | ļ_ | <u> </u> _ | ! _ | ! _ | <u> </u> _ | <u> </u> _ | ļ | !_ | !_ | <u> </u> _ | <u> </u> _ | <u> </u> _ | _ | _ _ | | | | 1732 | ! —— | | _ X | . — | !_ | !- | <u> </u> _ | !_ | <u> </u> | !_ | !_ | !_ | <u> </u> _ | <u> </u> _ | _ | <u> </u> _ | ۱_ | _ | _ | ۱_ |
 | ۱_ | 1_ | _ | _1_ | | STD3 | | 1737 | <u> </u> —— | | _ X | | ļ | <u> </u> _ | !_ | !- | ! | !_ | !_ | !_ | !_ | !_ | <u> </u> _ | ļ_ | <u> </u> | _ | <u> </u> _ | <u> _</u> | _ | _ | l_ | 1_1 | _1_ | | tcv | | 1742 | ļ | | X | | !_ | ! _ | !_ | ! | ! — | !_ | ! _ | <u> </u> _ | !_ | <u> </u> _ | !_ | <u> </u> _ | <u> </u> _ | <u> </u> | <u> </u> _ | <u> </u> _ | _ | 1_ | _ | _ | _ _ | | CB . | | 1746 | ļ | | _ X | ! – | !- | !_ | !_ | !_ | ! — | !_ | !_ | !_ | <u> </u> _ | <u> </u> _ | <u> </u> _ | _ | _ | <u> _</u> | l_ | ۱_ | l_ | _ | ۱_ | 1_1 | l_ | | ICSA | | 1751 | ļ | | X | <u> </u> _ | !- | !- | !_ | !_ | ! — | ! | !_ | !_ | <u> </u> _ | ! _ | <u> </u> _ | _ | <u> </u> _ | _ | _ | _ | 1_ | _ | _ | _ | _1_ | | TCSAB | | 1756 | | | _ X | <u> </u> _ | !_ | <u> </u> _ | !_ | !_ | <u> </u> _ | <u> </u> | !_ | <u> _</u> | <u> </u> _ | _ | _ | _ | | l_ | ۱_ | ۱_ | 1_ | _ | _ | _ | _1_ | | | | 1800 | | | _ X | ! _ | !_ | !_ | <u> </u> _ | ! _ | _ | !_ | _ | <u> </u> _ | _ | <u> </u> _ | _ | I _ | _ | _ | ١_ | 1_ | 1_ | _ | _ | _ | _1_ | | RI | | 1805 | | | - _ | <u> </u> _ | <u> </u> _ | <u> </u> _ | <u> </u> _ | _ | _ | _ | l_ | _ | _ | | _ | I | _ | _ | ١_ | _ | 1_ | <u> </u> | 1_ | 1_1 | _1_ | | PBLANK | | 1809 | | | X | !_ | _ | <u> </u> _ | _ | _ | _ | <u> </u> _ | _ | _ | _ | _ | | _ | _ | I _ | _ | 1_ | 1_ | 1_ | _ | 1_1 | _ _ | | ZZZZZZ | | 1814 | | | .ļ_ | <u> </u> _ | _ | <u> _</u> | _ | I _ | _ | _ | _ | _ | _ | _ | _ | _ | l_ | | I _ | _ | 1_ | _ | _ | 1_1 | _1_ | | CSS | | 1819 | | | X | <u> </u> _ | <u> </u> _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | 1_ | _ | | _ | _ | 1_1 | _1_ | | ECSSD | | 1823 | | | X | _ | <u> </u> _ | _ | 1_ | _ | _ | _ | _ | _ | _ | _ | | ا_ا | | _ | _ | I _ | l _ l | _ | I _ | 1_1 | | | N3V6-7 | | 1828 | | | X | I_ | 1_ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1_ | _ | _ | _ | _ | _ _ | | 3V6-7S1 | 1.00 | | | | X | <u> _</u> | | 1_ | l | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | I _ | _ | _ | <u> </u> | $\lfloor - \rfloor$ | | | 3V6-7S2 | 1.00 | | | | X | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | I _ | _ | _ | | | | | CCV | 1.00 | | | | X | _ | I _ | l_ | _ | _ | _ | _ | _ | _ | انا | _ | _ | | _ | _ | _ | <u> </u> | _ | _ | _ | | | | CCB | | 1846 | | | X | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | | | | 3V6-7L_ | 1.00 | | | | X | l_ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | | | | | N3A2-3 | | 1855 | | | X | _ | _ | _ | _ | _ | | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | | | | | _i_ | | N3A6-7 _ | 1.00 | | | | X | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | | | | | | | | | Ξi | _i_ | | A40 | 1.00 | | | | X | _ | _ | _ | _ | _ | | | _ | _ | | | | | | | | | | | i Ti | ī-i | _i_ | | A60 | 1.00 | | | | X | _ | _ | _ | _ | | | | | | | | | | | | i | | | | i | -i | -i- | | CA90 | 1.00 | 1914 | | | X | _ | _ | _ | _ | | | | | | | | | -i | -i | _i | | _ | i | -i | i | -i | -i- | | A125 | 1.00 | | | | X | _ | | _ | | | | | | | _i | _i | | | | i i | | _ | i | ı —i | i | _ | -i- | | A155 | 1.00 | 1923 | | | X | | i _ i | | | | | Ī | i i | i i | Ti | _i | -i | -i | -i | -i | | _ | | ı – i | ; | -i | -;- | | CCV | 1.00 | 1928 | | | X | | | | i | Ī | -i | -i | i | -i | i i | _i | _ | -i | | -i | _ | _ | | -i | -i | -i | - - | | CCB _ | 1.00 | 1932 | | | X | | | | i | -i | _; | -i | <u>i</u> | i | _ <u>i</u> | | -i | -i | -; | -i | - | - | - | -; | -; | -¦ | -;- | | A180 | 1.00 | 1937 | | | X | | | | | -i | -i | -i | -i | -¦ | -i | -i | -¦ | -¦ | - | -i | -¦ | _ | - | -1 | - | - | -¦- | | GA240 | 1.00 | | | | X | | | - | -; | i | -i | -; | -; | -i | -i | -; | -; | -; | -; | -; | -¦ | | -; | - | -; | -¦ | -¦- | | GA255 | 1.00 | | | | X | i | - | - | | - | - | - | - | -¦ | -¦ | - | - | | - | | -! | -! | | -! | -¦ | -! | -!- | | A2115 | 1.00 | • | | | X | | <u> </u> - | | - | - | -; | -: | -¦ | -; | -; | -: | -: | ! | -: | -! | -! | -! | -! | -! | -! | -1 | -¦- | | | | | | | 1 | - | ! | -! | ! | -! | -! | -! | -! | -! | -! | -! | -! | -! | -! | -! | ! | _! | ! | -! | -! | _! | _ _ | ### ANALYSIS RUN LOG Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_ ab Code: ESBL__ Case No.: 4254S_ SAS No.: ____ SDG No.:CA40__ nstrument ID Number: TJA 61 M_ Method: P_ Start Date: 09/03/92 End Date: 09/03/92 | EPA | | ! | | | | | | | | | | | | Aı | na: | l y | tes | 5 | | | | | | | | | | |--|--|------------|--------|-------------|-----------------|------------|------------|------------|------------|------------|-----|-------------|------------|-------|------------|-------------|-------|----------|-------------|------------|-------------|----|----------|------------|-------------|------|-----| | Sample No. | D/F | Time | * | R | F | | | | | | | | | | | | | | | [| | | | ! | - | 1 | - | | | | !
! | !
} | | 1 5 | !
! | !
 | | | | |
 | !
! | i
 | | [
 | | | |
 | | | | - ! | | - | - [| | CSA | 1.00 | 1955 | | | X | i – | j — | i — | - | - | _ | | ¦ — | _ | _ | - | - | - | | - | | - | - | - | -1 | - - | - - | | CSAB | 1.00 | 2000 | | | X | | i _ i | i _ | i _ i | | _ | | | i – | i – | _ | | i — | i – i | _ | | - | | -i | -; | -¦: | -¦` | | RI | | 2005 | | | Ï_ | <u> </u> | | <u> </u> | | | | | | i | i _ i | _ | | | | <u> </u> | | i | _i | _i | _i | _ · | Ti. | | cv | 1.00 | 2009 | | | X | _ | _ | _ | _ | | | | | | | | i _ i | <u> </u> | i _ i | | i | | _i | | | _i. | _i | | CB | 1.00 | 2014 | | | X | _ | _ | | | <u> </u> | _ | | _ | _ | _ | _ | _ | <u> </u> | | | | | \Box i | $\equiv i$ | _i | _i. | _i | | | | | | | . _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _1 | _ | | _[. | _[| | | | <u> </u> | | | .ļ_ | _ | _ | _ | | _ | | _ | _ | | _ | | _ | _ | _ | _ | _ | _1 | _1 | _ | _1. | _1. | _1 | | | | | | | . _ | ! _ ! | <u> </u> _ | _ | _ | | _ | | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | _1 | _1. | _1. | _ | | | | ! | | | .ļ_ | <u> </u> _ | | <u> </u> _ | <u> </u> _ | | _ | | _ | _ | | | _ | _ | _ | _ | _ | _1 | _1 | _1 | _1. | _1. | _1 | | | | ! | | | . | _ | | _ | - | _ | _ [| _ | | _ | _ | _ | _ | _ | _! | | ! | _! | _ | _[| _[. | _[. | _ | | [. | | <u></u> | | | !_ | _ | !-! | - | _! | _ | -! | _ | _ | | _ | _ | | _ | | _ | _ | _! | _ | _! | _[. | _!. | _ | | | | | | | .] — | - | _ | _ | ! | _! | ! | _ | _ | _ | _ | _ | _ | _ | ! | _ | | _! | _! | _! | _!. | _!. | _! | | | ! | ! | | | . | <u> </u> | | !-! | - | -! | -! | ! | | _ | - | ! | _ ! | -! | _! | | | _! | -! | -! | <u>-!</u> . | -ļ. | _! | | ······································ | i | | | | 1- | - | - | | - | - | ! | _ | - | | -! | - | | | -! | - | -! | -! | - | -! | -!. | -!- | _! | | | ! | i | | | | - | - | - | _ | | -! | -! | - | -! | | -! | ! | -! | -! | - | - | - | -! | -! | -!. | -!- | -! | | | | <u>'</u> | | | | - | ! | - | -1 | ! | -¦ | -! | - | -! | ! | -! | | [| -! | -! | -! | -! | -! | -! | -¦. | -!- | -[| | | ······································ | ˈ <u>ˈ</u> | | | 1- | - | - | - | | -: | -: | -¦ | — | ! | _! | ! | | -¦ | -! | ! | -! | -! | -! | -! | -¦- | -!- | -[. | | | | | | | ¦ — | - | - | | - | - | - | -¦ | - | | -: | - | - | -¦ | - | | - | -! | - | -! | -¦. | -¦- | -1 | | · | | | | | ¦- | - | - | - | | - | -¦ | -: | | -: | -: | -: | -: | -: | -! | -¦ | -¦ | -! | -! | -: | -¦- | -¦- | -† | | | | i | | | i — | | | <u> </u> | | - | - | -; | -¦ | - | _¦ | -! | | -: | - | -1 | -; | -¦ | -¦ | -: | -¦- | -¦- | -!. | | | | i | | | | - | -: | -¦ | -i | -1 | -; | -; | -; | -; | | - | -; | -1 | - | -¦ | -; | -; | -; | -: | -¦- | -¦- | -¦` | | | | i | | | i – | i — i | | - | -i | -i | | _ | <u>_</u> | _ | -; | -i | -i | -¦ | -¦ | - | - | -¦ | - | -¦ | -¦· | -¦- | -¦: | | | | i | | | i – | | | -i | -i | _i | _; | -i | -i | -i | -i | _; | | -i | -i | _; | -i | -i | -i | -i | ¦- | -;- | -i· | | | | | | | | i | -i | -i | -i | _i | -i | Ī | _ | -i | -i | -i | -i | -i | _i | _ | -i | -i | -i | -i | - - | -i- | -¦· | | | | i | | | $I \subseteq I$ | _i | _i | _i | Ī | _i | _i | \equiv i | i | _i | -i | | -i | -i | i | -i | _i | -i | -i | -i | -;· | -i- | -i | | | | | | | | _i | \equiv i | \equiv i | Ξi | Ξi | _i | _i | | Ī | i | | -i | Ī | -i | -i | -i | -i | -i | -i | _ i - | -i- | -i- | | | | i | | | 1_1 | _i | _i | _i | _i | \equiv i | _i _i- | _i- | i | | | | | | | | _ | _i | | _i | \equiv i | Ξİ | $\exists i$ | _i | _i | \equiv i | $\exists i$ | | _i | $\exists i$ | \equiv i | \equiv i | Ξi | _i | _ | _i | _i | _i | | | | | | | آ_ا | _1 | _ | _i | _i | _i | Ξi | _i | _i | _i | _i | \equiv i | _i | =i | \equiv i | _i | \equiv i | _i | Ξi | _ | _i | _i. | _i` | | | | | | | 1_1 | _ | _i | | _i | _i | Ξİ | _i | _ | | _i | <u>_i</u> | _i | Ξi | $\exists i$ | _i | Ξi | _i | Ξi | _i | _i_ | _i_ | _i | | | | | | | _ | _ | _ | _ | _ | _ | _1 | _1 | _ | _ | | | _i | _i | <u>_i</u> | _i | $\exists i$ | _1 | _i | _i | _i_ | _[_ | _i_ | | | [| 1 | | | 1_1 | _ | _ | _1 | _ | _ | _1 | _1 | _ | | _1 | _ | _1 | _1 | _1 | _1 | _1 | _1 | _1 | _[. | _ _ | _ _ | | FORM XIV - IN ### TOTAL KJELDAHL NITROGEN TOTAL PHOSPHATE **DATA PACKAGE** Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom
Paulson Client Project ID: Sample Descript: W.O. #4254 Soil Analysis for: First Sample #: % Moisture 208-3559 Sampled: Received: Aug 17, 1992 Aug 21, 1992 Analyzed: Aug 24, 1992 Reported: ed: Sep 15, 1992 #### **LABORATORY ANALYSIS FOR:** % Moisture | Sample
Number | Sample
Description | Detection Limit
% | Sample
Result
% | |------------------|-----------------------|----------------------|-----------------------| | 208-3559 | N3-V-6'-7' | 0.010 | 17 | | 208-3560 | N3-A-2'-3' | 0.010 | 9 | | 208-3561 | N3-A-6'-7' | 0.010 | 17 | Analytes reported as N.D. were not present above the stated limit of detection. SEQUOIA ANALYTICAL JOEAL Tod Granicher Project Manager THIS REPORT HAS BEEN APPROVED AND REVIEWED BY ESBL PROJECT MANAGER DATE Engineering Science, Inc. Berkeley, CA 94710 Client Project ID: W.O. #4254 Sampled: Received: Aug 17, 1992 600 Bancroft Way Sample Descript: Analysis for: Total Kjeldahl Nitrogen Analyzed: Aug 21, 1992 Aug 27, 1992 Attention: Tom Paulson First Sample #: 208-3559 Soil Reported: Sep 15, 1992 #### LABORATORY ANALYSIS FOR: ### **Total Kjeldahl Nitrogen** | Sample
Number | Sample
Description | Detection Limit
mg/kg | Sample
Result
mg/kg | |------------------|-----------------------|--------------------------|---------------------------| | 208-3559 | N3-V-6'-7' | 20 | 240 | | 208-3560 | N3-A-2'-3' | 20 | 240 | | 208-3561 | N3-A-6'-7' | 20 | 110 | | - | Method Blank | 0.10 | N.D. | Analytes reported as N.D. were not present above the stated limit of detection. SEQUOIA ANALYTICAL **Tod Granicher Project Manager** Please Note: Analysis results reported on a dry-weight basis. Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: W.O. #4254 Sampled: Aug 17, 1992 Sample Descript: Analysis for: Soil **Total Phosphorous** Received: Aug 21, 1992 Analyzed: Sep 12, 1992 First Sample #: 208-3559 Reported: Sep 15, 1992 #### LABORATORY ANALYSIS FOR: #### **Total Phosphorous** | | Sample
Number | Sample
Description | Detection Limit
mg/kg | Sample
Result
mg/kg | |---|------------------|-----------------------|--------------------------|---------------------------| | 2 | 208-3559 | N3-V-6'-7' | 10 | 270 | | 2 | 08-3560 | N3-A-2'-3' | 10 | 300 | | 2 | 08-3561 | N3-A-6'-7' | 10 | 210 | | | - | Method Blank | 10 | N.D. | Analytes reported as N.D. were not present above the stated limit of detection. **SEQUOIA ANALYTICAL** 70ELL **Tod Granicher Project Manager** Please Note: Analysis results reported on a dry-weight basis. 2083559.ENG <3> Engineering Science, Inc. 600 Bancroft Way Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: W.O. #4254 QC Sample Group: 2083559-61 Reported: Sep 15, 1992 #### **QUALITY CONTROL DATA REPORT** | ANALYTE | Total Kjeldahl | Total | | |--------------------------|----------------|--------------|-----------------| | ,— - | Nitrogen | Phosphorous | % Moisture | | | | | | | Method: | EPA351.4 | EPA365.3 | EPA160.3 | | Analyst: | G. Kern | K. Follett | Y. Arteaga | | Reporting Units: | mg/kg | mg/kg | 7. Alteaga
% | | Date Analyzed: | Aug 27, 1992 | Sep 12, 1992 | Aug 24, 1992 | | QC Sample #: | 208-2430 | 208-3561 | - | | QO oumple #. | 200-2400 | 206-3301 | 208-3560 | | Sample Conc.: | 40 | 040 | • | | Sample Conc.: | 49 | 210 | 9 | | | | | | | Spike Conc. | | | | | Added: | 4000 | 100 | N.A. | | | | | | | Conc. Matrix | | | | | Spike: | 3600 | 330 | N.A. | | | 0000 | 000 | 14.74. | | Matrix Cailea | | | | | Matrix Spike % Recovery: | 00 | 400 | | | % necovery: | 89 | 120 | N.A. | | | | | | | Conc. Matrix | | | | | Spike Dup.: | 3600 | 350 | 8 | | Makele On the | | | | | Matrix Spike | | | | | Duplicate | 00 | 440 | | | % Recovery: | 89 | 140 | N.A. | | | | | | | Relative | | | | | % Difference: | 0.0 | 5.9 | 12 | | | | | | | | | | | #### **SEQUOIA ANALYTICAL** Tod Granicher Project Manager | % Recovery: | Conc. of M.S Conc. of Sample | x 100 | *** | |------------------------|---------------------------------------|-------|-----| | | Spike Conc. Added | | | | Relative % Difference: | Conc. of M.S Conc. of M.S.D. | x 100 | | | | (Conc. of M.S. + Conc. of M.S.D.) / 2 | | | Ballelle Engineers Science Bass No, DE 268,03 Form No. misture to all 5 arroles STARS 2/45% Tabe arors Remarks Bran 602 Bluss 204 BAKS 402 1602 402 Received by: Received by: (Signature) (Signature) Containers Resultato ło Number Container No. Date/Time Date/Time Remarks Send SAMPLE TYPE (V) SEFF Relinquished by: (Signature) Relinquished by: (Signature) 1230 4 Date/Time 7 7 7 1 7 7 Received for Laboratory by: Received by: (Signature) Received by: (Signature) (Signature) 22,52 SAMPLE 1.D. 13-1-6-7 16-9 1-1 N3- A - (1, 1) N3-A-6N A-2'-3' A-3'-31 18 AUG72 0834 NEWARK AFB N3-V-N3- A-Date/Time Date/Time Date/Time 43-V V3-V N3-N3-Project Title N3 とろ TIME 1135 1015 1135 115 Relinguished by: (Signafurg) Relinguks//ed by: (Signayure) Relinquished by: (Signature) 1200 1115 130 R 0 SAMPLERS: (Signatuye) Columbus Laboratories 64468-0636 7 Aus 1997 A Bush 17 Aub 92 Au6 92 7 AUG 92 7 AUG 92 7 AUG 92 7AV6 92 7Au692 DATE JAMP 25 7AU692 Proj. No. Page ____ 40 # CHAIN OF CUSTODY RECORD ENGINEERING-SCIENCE | ES JOB NO. | B NO. | PROJECT NAME/LOCATION | | PRESERVATIVES | | REQUIRED | ED | BHIP TO: | |--------------|----------|--------------------------------|------------------------|---------------|---------|----------|---------|------------------------| | | | W. O. # 4754 | | | | | | | | FIELD C | CONTACT: | Rudy Mar barre | | ANALYBES | . + | REQUIRED | | | | SAMPLER | B NAMES | SAMPLERS NAMES & SIGNATURES | | -2 | | <u>.</u> | | | | | | | 255 Sept.
2440 7525 | (m. d.cs) | | grafts | | 5u8-011+ | | DATE | TIME | FIELD SAMPLE IDENTIFIER | | ıd v | | om | | пемликв | | 11/163/1 | 1000 | N3-V-6-7' | X | 4254- | 13 | × | 68 3559 | 16 02 (Solid) JAN | | | 1115 | 13-4-21-31 | x
x | 4254- | 3.8 | \times | 0 0 | | | 3 | 1135 | N3-A-6-7 | X | 9284 | 28 | X | _\
 | Ž | | | | | | | | | | Use MOUS for report, | | | | | | | | | | units Regart methalbi. | | | | | | | | | | MS/MSD. JuleTA | | | | | | | | | | Report 16. Town Pauls | | | | | · . | | | | | KS8L. | | | | | | | | | | | | | | | 1 | | | | | | | FIELD C | UBTODY | FIELD CUSTODY RELINQUISHED BY: | 1/2 | | | | DATE: | H P2 TIME: | | SHIPPED VIA: | VIA: | AIRBILL # | | ON RECEIPT: | CUBTODY | | BENL8? | , TEMP: | | RECEIVED | D FOR L | FOR LABORATORY BY: | J. My | | | | DATE: 8 | 8/21/92 TIME: 11:30 A | ### APPENDIX C FACILITY 27 SOIL GAS PERMEABILITY DATA Table C-1. Results of Soil Gas Permeability Test at Monitoring Point N1-MPA | | Press | Pressure ("H ₂ O) by Depth | epth | | Press | Pressure ("H ₂ O) by Depth | epth | |------------|-------|---------------------------------------|------|------------|-------|---------------------------------------|------| | Time (min) | 4.0′ | 6.5′ | 9.0′ | Time (min) | 4.0′ | 6.5′ | 9.0′ | | 0 | 0 | | | 14 | 0.015 | 1.22 | 1.23 | | 1 | 0> | 1.24 | 1.25 | 16 | 0.005 | 1.22 | 1.23 | | 2 | 0.01 | 1.25 | 1.25 | 18 | 0.005 | 1.23 | 1.23 | | 3 | 0.015 | 1.25 | 1.25 | 20 | 0.005 | 1.23 | 1.23 | | 5 | 0.65 | 1.23 | 1.24 | 22 | 0.005 | 1.24 | 1.00 | | 9 | 1.00 | 1.24 | 1.24 | 24 | 0.005 | 1.24 | 1.00 | | 7 | 0.064 | 1.00 | 1.20 | 27 | 0.005 | 1.23 | 1.00 | | 8.25 | 0.85 | 1.22 | 1.23 | 30 | 0.005 | 1.22 | 1.22 | | 9.25 | 0.85 | 1.22 | 1.22 | 33 | 0.005 | 1.23 | 1.21 | | 12 | 0.11 | 1.22 | 1.22 | 36 | 0 | 1.235 | 1.21 | Table C-1. Results of Soil Gas Permeability Test at Monitoring Point N1-MPA (Continued) | | | Pressure ("H ₂ O) by Dept | h | |------------|------|--------------------------------------|-------| | Time (min) | 4.0′ | 6.5′ | 9.0′ | | 39 | 0 | 1.23 | 1.21 | | 42 | 0 | 1.24 | 1.215 | | 45 | 0 | 1.235 | 1.22 | | 48 | 0 | 1.24 | 1.225 | | 51 | 0 | 1.235 | 1.22 | | 54 | 0 | 1.24 | 1.23 | | 57 | 0 | 1.24 | 1.23 | | 60 | 0 | 1.24 | 1.23 | | 65 | 0 | 1.24 | 1.23 | | 70 | 0 | 1.25 | 1.22 | | 75 | 0 | 1.25 | 1.25 | | 85 | 0 | 1.25 | 1.25 | | 95 | 0 | 1.25 | 1.25 | | 115 | 0 | 1.25 | 1.25 | Table C-2. Results of Soil Gas Permeability Test at Monitoring Point N1-MPB | | Pres | Pressure ("H ₂ O) by Depth |)epth | | Press | Pressure ("H ₂ O) by Depth | epth | |------------|-------|---------------------------------------|-------|------------|-------|---------------------------------------|-------| | Time (min) | 4.0′ | 6.5′ | 9.0′ | Time (min) | 4.0′ | 6.5′ | 9.0′ | | 0 | 0.01 | 0.01 | 0 | 12 | 0 | 0.128 | 0.13 | | 1 | 0.02 | 0.14 | 0.145 | 14 | 0 | 0.132 | 0.137 | | 2 | 0.015 | 0.14 | 0.145 | 16 | 0 | 0.135 | 0.135 | | 3 | 0.005 | 0.135 | 0.140 | 18 | 0.005 | 0.125 | 0.13 | | 4 | 0.005 | 0.14 | 0.14 | 20 | 0 | 0.132 | 0.135 | | 5 | 0.002 | 0.135 | 0.135 | 23 | 0.003 | 0.125 | 0.127 | | 9 | 0 | 0.125 | 0.125 | 26 | 0 | 0.13 | 0.13 | | 7 | 0> | 0.125 | 0.125 | 29 | 0.002 | 0.13 | 0.132 | | ∞ | <0> | 0.120 | 0.127 | 32 | 0.005 | 0.13 | 0.13 | | 6 | 0> | 0.123 | 0.125 | 32 | 0 | 0.13 | 0.132 | | 10 | <0> | 0.127 | 0.13 | 38 | 0.01 | 0.138 | 0.14 | Table C-2. Results of Soil Gas Permeability Test at Monitoring Point N1-MPB (Continued) | | I | Pressure ("H ₂ O) by Depth | 1 | |------------|-------|---------------------------------------|-------| | Time (min) | 4.0′ | 6.5′ | 9.0′ | | 41 | 0.005 | 0.125 | 0.127 | | 44 | 0 | 0.13 | 0.135 | | 47 | 0 | 0.125 | 0.135 | | 50 | 0 | 0.13 | 0.13 | | 60 | 0 | 0.135 | 0.135 | | 70 | 0.005 | 0.135 | 0.135 | | 80 | 0.02 | 0.13 | 0.13 | | 90 | 0.013 | 0.13 | 0.13 | | 100 | 0.01 | 0.13 | 0.13 | | 110 | 0.02 | 0.137 | 0.137 | | 120 | 0.015 | 0.135 | 0.135 | Table C-3. Results of Soil Gas Permeability Test at Monitoring Point N1-MPC | | Press | Pressure ("H ₂ O) by Depth | epth | | Press | Pressure ("H,O) by Depth | epth | |------------|--------------|---------------------------------------|------|------------|-------|--------------------------|------| | Time (min) | 2.7′ | 5.0′ | 8.0′ | Time (min) | 2.7′ | 5.0′ | 8.0′ | | 0 | 0> | 0> | 0> | 21 | 0> | 0> | 0> | | 1 | 0> | <0> | <0> | 26 | 0> | 0>
| 0> | | 1.5 | 0> | <0> | <0> | 36 | 0> | 0> | 0> | | 2 | 0> | <0> | <0> | 41 | 0> | 0> | 0> | | 2.5 | 0> | <0 | 0> | 46 | 0> | 0> | 0> | | 3 | 0> | <0> | 0> | 99 | 0> | 0> | 0> | | 4 | 0> | <0 | <0> | 99 | <0> | 0> | 0> | | 9 | 0> | <0> | 0> | 92 | 0> | 0> | 0> | | 8 | 0> | <0> | <0 | 106 | <0> | 0> | 0> | | 10 | <0> | <0 | <0> | 136 | 0> | 0> | 0> | | 12 | <0> | 0> | 0> | | | | | | 14 | 0> | 0> | 0> | | | | | | 16 | <0> | 0> | <0> | | | | | ## APPENDIX D FACILITY 27 IN SITU RESPIRATION TEST DATA Figure D-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPA-6.5' Figure D-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPA-9.0' Figure D-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-6.5' Figure D-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-9.0' ### APPENDIX E FACILITY 89 SOIL GAS PERMEABILITY DATA Table E-1. Results of Soil Gas Permeability Test at Monitoring Point N2-MPA | | Pres | Pressure ("H,O) by Depth | epth | | Press | Pressure ("H ₂ O) by Depth | epth | |------------|-------|--------------------------|------|------------|-------|---------------------------------------|------| | Time (min) | 2.0′ | 4.5′ | 7.0′ | Time (min) | 2.0′ | 4.5′ | 7.0′ | | 0 | 0> | 0> | <0 | 25 | 0.045 | 0.32 | 0> | | 1 | 0 | 0.35 | <0 | 30 | 0.015 | 0.34 | 0> | | 3 | 0 | 0.35 | <0 | 35 | 0 | 0.34 | 0> | | 4 | 0> | 0.35 | <0 | 45 | 0 | 0.35 | 0> | | 9 | 0.002 | 0.35 | <0 | 55 | 0> | 0.35 | 0> | | 6 | 0.03 | 0.35 | <0 | 9 | 0> | 98'0 | 0> | | 10 | 0.07 | 0.35 | <0 | 85 | 0> | 0.35 | 0> | | 12 | 0 | 0.30 | <0 | 105 | 0 | 0.33 | 0> | | 15 | <0> | 0.32 | <0> | | | | | | 20 | <0> | 0.35 | <0> | | | 1 | | Table E-2. Results of Soil Gas Permeability Test at Monitoring Point N2-MPB | | Press | Pressure ("H2O) by Depth | epth | | Press | Pressure ("H ₂ O) by Depth | epth | |------------|-------|--------------------------|-------|------------|-------|---------------------------------------|-------| | Time (min) | 5.0′ | 7.5′ | 10.0′ | Time (min) | 5.0′ | 7.5′ | 10.0′ | | 0 | 0 | 0 | 0 | 10 | 0.031 | 0:030 | 0:030 | | 0.5 | 0.020 | 0.016 | 0.015 | 11 | 0.032 | 0:030 | 0.030 | | - | 0.026 | 0.029 | 0.029 | 12 | 0.035 | 0.030 | 0:030 | | 2 | 0.030 | 0.029 | 0.028 | 13 | 0.034 | 0.024 | 0.020 | | 3 | 0.030 | 0.029 | 0.025 | 14 | 0.020 | 0.011 | 0.010 | | 4 | 0.030 | 0.029 | 0.025 | 15 | 0.024 | 0.019 | 0.015 | | 5 | 0.030 | 0.029 | 0.026 | 16 | 0.023 | 0.020 | 0.019 | | 9 | 0.031 | 0.030 | 0.024 | 17 | 0.022 | 0.021 | 0.016 | | 7 | 0.021 | 0.019 | 0.015 | 18 | 0.025 | 0.020 | 0.015 | | 8 | 0.029 | 0.026 | 0.026 | 19 | 0.024 | 0.021 | 0.017 | | 6 | 0.029 | 0.029 | 0.025 | 20 | 0.023 | 0.019 | 0.015 | Table E-2. Results of Soil Gas Permeability Test at Monitoring Point N2-MPB (Continued) | |] | Pressure ("H ₂ 0) by Depth | | |------------|-------|---------------------------------------|-------| | Time (min) | 5.0′ | 7.5′ | 10.0′ | | 25 | 0.025 | 0.025 | 0.022 | | 30 | 0.025 | 0.025 | 0.022 | | 35 | 0.025 | 0.025 | 0.020 | | 45 | 0.029 | 0.025 | 0.020 | | 55 | 0.029 | 0.029 | 0.029 | | 65 | 0.029 | 0.026 | 0.026 | | 85 | 0.019 | 0.019 | 0.015 | | 105 | 0.019 | 0.019 | 0.015 | Table E-3. Results of Soil Gas Permeability Test at Monitoring Point N2-MPC | Time
(min) | Pressure
("H ₂ O)
by Depth
(4.7') | Time
(min) | Pressure
("H,O)
by Depth
(6.5') | Time
(min) | Pressure
("H ₂ O)
by Depth
(9.0') | Time
(min) | Pressure
("H ₂ O)
by Depth
(4.7') | Time
(min) | Pressure
("H ₂ O)
by Depth
(6.5') | Time
(min) | Pressure ("H ₂ O) by Depth (9.0') | |---------------|---|---------------|--|---------------|---|---------------|---|---------------|---|---------------|--| | 0 | 0> | 0 | 0> | 0 | 0> | 18:38 | 0> | 19:38 | 0> | 19:59 | 0> | | 0.3 | 0> | 0.3 | <0> | 0.3 | <0> | 20 | 0> | 20 | 0> | 20 | 0> | | 1:58 | 0> | 2:23 | <0> | 3:07 | <0> | 30 | 0> | 30 | 0> | 30 | 0> | | 3:57 | 0> | 4:24 | <0> | 4:54 | <0> | 40 | 0 | 40 | 0 | 40 | 0> | | 5:40 | 0> | 90:9 | <0> | 6:33 | <0> | 50 | 0 | 20 | 0 | 20 | 0> | | 7:18 | 0> | 7:38 | <0 | 7:59 | <0> | 09 | 0 | 09 | 0 | 09 | 0> | | 8:38 | 0> | 9:10 | <0 | 9:38 | <0> | 08 | 0 | 80 | 0 | 08 | 0> | | 10:20 | <0> | 10:47 | <0> | 11:25 | 0> | 100 | 0 | 100 | 0 | 100 | 0> | | 12:05 | <0> | 12:50 | <0> | 13:17 | 0> | | | | | | | | 14:10 | <0> | 17:14 | <0> | 17:46 | 0> | | | | | | | ### APPENDIX F FACILITY 89 IN SITU RESPIRATION TEST DATA Figure F-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPA-7.0' Figure F-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPB-7.5' Figure F-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPB-10.0' Figure F-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPC-6.5'